Rút gọn biểu thức :
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right).\frac{x-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\) với \(x\ge0,x\ne9\)
Mình ra kết quả là : \(A=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
Mấy bạn giải giúp mình sửa lại nhé. Mình cảm ơn !
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
mình cũng ra thế mà . TÀO LAO à ????