K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

27 tháng 1 2016

ban giai ra ho minh voi

 

17 tháng 2 2021

\(\dfrac{2a^2-b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow\dfrac{\left(2a^2+2b^2\right)-3b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow2-\dfrac{3b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow\dfrac{b^2}{a^2+b^2}=\dfrac{9}{13}\)

\(\Rightarrow1-\dfrac{b^2}{a^2+b^2}=1-\dfrac{9}{13}=\dfrac{4}{13}\)

\(\Leftrightarrow\dfrac{a^2}{a^2+b^2}=\dfrac{4}{13}\)

 

\(\dfrac{a^2}{b^2}=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{a}{b}=-\dfrac{2}{3}\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 10 2023

\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)

\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).

Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)

Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} =  - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)

Vậy \(a =  - b\) và \(b =  - a\). Hay a và b là hai số đối nhau và khác nhau.

Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.