Cho x(x+14)(x+2)(x+3)(...)(x+2017)=2017(với x>0). Chứng minh rằng x<\(\frac{1}{2017!}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
cố gắng làm nhé sau khi tự làm bạn sẽ lên trình độ đấy
cố lên
ta có x+2016 và x+2017 là 2 số liên tiếp
=> 1 trong 2 số có 1 số chia hết cho 2
nên A=(x+2016)(x+2017) chia hết cho 2
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)