Diễn tả giá trị lượng giác của góc sau bằng giá trị lượng giác của góc x
\(cos^{2015}\left(x-\dfrac{11\pi}{2}\right);cos^{2019}\left(x+\dfrac{7\pi}{2}\right);sin^{2019}\left(\dfrac{5\pi}{2}-x\right);cot^2\left(x-\dfrac{\pi}{2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)
a, Vì : \(\pi< a< \dfrac{3\pi}{2}\) nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)
do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)
từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)
\(0< a< \dfrac{\pi}{2}\Rightarrow0< \dfrac{a}{2}< \dfrac{\pi}{4}\Rightarrow sin\dfrac{a}{2}>0\)
\(\Rightarrow sin\dfrac{a}{2}=\sqrt{1-cos^2\dfrac{a}{2}}=\dfrac{3}{5}\)
\(sina=2sin\dfrac{a}{2}cos\dfrac{a}{2}=2.\left(\dfrac{4}{5}\right)\left(\dfrac{3}{5}\right)=\dfrac{24}{25}\)
\(cosa=\pm\sqrt{1-sin^2a}=\pm\dfrac{7}{25}\)
\(tana=\dfrac{sina}{cosa}=\pm\dfrac{24}{7}\)
a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\)
\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\)
\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)
b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)
\(P=2.cos2x=-0,56\)
\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)
tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\)
\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\)
\(a,cos\left(\dfrac{21\pi}{6}\right)=cos\left(3\pi+\dfrac{\pi}{2}\right)=cos\left(\pi+\dfrac{\pi}{2}\right)=-cos\left(\dfrac{\pi}{2}\right)=0\\ b,sin\left(\dfrac{129\pi}{4}\right)=sin\left(32\pi+\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\\ c,tan\left(1020^o\right)=tan\left(5\cdot180^o+120^o\right)=tan\left(120^o\right)=-\sqrt{3}\)
a) \(cos638^o=cos\left(-82^o\right)=cos\left(82^o\right)=sin8^o\)
b) \(cot\dfrac{19\pi}{5}=cot\dfrac{4\pi}{5}=-cot\dfrac{\pi}{5}\)
\(\dfrac{\pi}{2}< x< \pi\Rightarrow cosx< 0\)
\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\dfrac{20}{29}\)
\(tanx=\dfrac{sinx}{cosx}=-\dfrac{21}{20}\)
\(cotx=\dfrac{1}{tanx}=-\dfrac{20}{21}\)
\(\sin^2x=\sqrt{1-\left(-\dfrac{4}{5}\right)^2}=\dfrac{9}{25}\)
mà \(\sin x>0\)
nên \(\sin x=\dfrac{3}{5}\)
=>\(\tan x=-\dfrac{3}{4}\)
\(\Leftrightarrow\cot x=-\dfrac{4}{3}\)
\(sin\dfrac{129\pi}{4}=sin\dfrac{128\pi}{4}+sin\dfrac{\pi}{4}\\ =sin32\pi+sin\dfrac{\pi}{4}=sin\dfrac{\pi}{4}\)