1/2 . 2^𝑛+4. 2^𝑛 = 2^5 giúp mình zói ạ=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.16\ge2^n>4\)
\(2.2^4\ge2^n>2^2\)
\(2^5\ge2^n>2^2\)
=> \(n\in\left\{3,4,5\right\}\)
Vậy: \(n\in\left\{3,4,5\right\}\)
a: \(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
\(a,\Rightarrow n-2+5⋮n-2\\ \Rightarrow n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-3;1;3;7\right\}\\ b,\Rightarrow2\left(n-4\right)+13⋮n-4\\ \Rightarrow n-4\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\\ \Rightarrow n\in\left\{-9;3;5;17\right\}\\ c,\Rightarrow6n-9⋮3n+1\\ \Rightarrow2\left(3n+1\right)-12⋮3n+1\\ \Rightarrow3n+1\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\\ \Rightarrow n\in\left\{-1;0;1\right\}\left(n\in Z\right)\\ d,\Rightarrow n^2+2n-n-2+3⋮n+2\\ \Rightarrow n\left(n+2\right)-\left(n+2\right)+3⋮n+2\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Sửa đề : \(2^x+2^{x+3}=144\\ =>2^x.\left(1+2^3\right)=144\\ =>2^x=\dfrac{144}{9}=16=2^4\\ =>x=4\)
`@` `\text {Ans}`
\(2^x+2^{x+3}=144\)
`\Rightarrow 2^x + 2^x + 2^3 = 144`
`\Rightarrow 2^x (8+1)=144`
`\Rightarrow 2^x*9=144`
`\Rightarrow 2^x=144 \div 9`
`\Rightarrow 2^x = 16`
`\Rightarrow 2^x = 2^4`
`\Rightarrow x=4`
a: Để B là số nguyên thì \(n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(B=\dfrac{n-2+3}{n-2}=1+\dfrac{3}{n-2}\)
Để B có giá trị lớn nhất thì n-2=-1
hay n=1
https://loga.vn/hoi-dap/tim-so-tu-nhien-n-sao-cho-n-6-chia-het-cho-n-2-36137
https://h7.net/hoi-dap/toan-6/tim-so-tu-nhien-n-de-3n-7-chia-het-cho-n-faq26687.html
n(2n-3)-2n(n+2)
=2n2-3n-2n2-4n
= - 7n luôn chia hết cho 7 (vì -7 chia hết cho 7)
vậy n(2n-3)-2n(n+2) luôn chia hết cho 7 với mọi n
tham khảo ở link bn nhé
\(\dfrac{1}{2}.2^{n+4}.2^n=2^5\\ =>2^{n+4+n}=2^5:\dfrac{1}{2}\\ =>2^{2n+4}=2^5.2\\ =>2^{2n+4}=2^6\\ =>2n+4=6\\ =>2n=2=>n=1\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}\cdot2^{n+4}\cdot2^n=2^5\)
`\Rightarrow `\(\dfrac{1}{2}\cdot2^n\cdot2^4\cdot2^n=2^5\)
`\Rightarrow `\(2^{n\cdot2+4}=2^5\div\dfrac{1}{2}\)
`\Rightarrow `\(2^{n\cdot2+4}=2^6\)
`\Rightarrow `\(n\cdot2+4=6\)
`\Rightarrow `\(2n=2\)
`\Rightarrow n=1`