Giup em voi a
Giai cac bat phuong trinh sau va bieu dien tap nghiem cua bat phuong trinh tren truc so:
a. 2(3x-1)-2x<2x-1
b. 4x-8≥3(3x-2)+4-2x
c. 3(x-2)(x+2)<3x²+x
d. (x+4)(5x-1)>5x²+16x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x ( x2 + 2 ) > x3 - x + 6 (1)
<=> x3 + 2x > x3 - x + 6
<=> 3x > 6
<=> x > 2
Vậy tập nghiệm của phương trình (1) là S = { x | x > 2 }
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
Chúc bn học tốt❤
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
Vậy x = 2
\(2\left(x-1\right)-5=3\left(5-3x\right)\)
\(\Leftrightarrow2x-2-5=15-9x\)
\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)
\(\Leftrightarrow2x-7=15-9x\)
\(\Leftrightarrow2x+9x=15+7\)
\(\Leftrightarrow11x=22\)
\(\Leftrightarrow x=22\div11\)
\(\Leftrightarrow x=2\)
\(\text{Vậy }x=2\)
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0
Câu 1:
a) \(7x-14=0\Leftrightarrow7x=14\Leftrightarrow x=2\)2
Vậy tập nghiệm của phương trình là S={2}
b) \(\left(3x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
Vậy......................
c)\(\left(3x-1\right)=x-2\)
\(\Leftrightarrow\)\(3x-1-x+2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)Vậy...................
Câu 2:a)
\(2x+5\le9\Leftrightarrow2x\le4\)
\(\Leftrightarrow x\le2\)vậy......
b)\(3x+4< 5x-3\)
\(\Leftrightarrow2x>7\Leftrightarrow x>\frac{2}{7}\)
Vậy..........
c)\(\frac{\left(3x-1\right)}{4}>2\)
\(\Leftrightarrow3x-1>8\)
\(\Leftrightarrow3x>9\Leftrightarrow x>3\)
vậy.............
Câu 3:a).....
b) Áp dụng định lí pytago vào \(\Delta\)vuong ABC,có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=144+256=20^2\)
\(\Leftrightarrow BC=20\)
Xét \(\Delta\)vuông ABC và \(\Delta\)vuông HBA, có:
\(\widehat{BAH}=\widehat{ACH}\)(cùng phụ với góc ABC)
\(\Rightarrow\Delta\)ABC đồng dạng với\(\Delta\)HBA(g.g)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)
\(\frac{\Rightarrow16}{AH}=\frac{20}{16}\Rightarrow AH=12,8\left(cm\right)\)
Lời giải:
$x-1\geq |x^2-3x+2|\geq 0\Rightarrow |x-1|=x-1$. Do đó:
$x-1\geq |x^2-3x+2|$
$\Leftrightarrow |x-1|\geq |(x-1)(x-2)|$
$\Leftrightarrow |x-1|(1-|x-2|)\geq 0$
$\Leftrightarrow 1-|x-2|\geq 0$
$\Leftrightarrow -1\leq x-2\leq 1$
$\Leftrightarrow 1\leq x\leq 3$.
$\Rightarrow x\in [1;3]$
$b-a=2$ nên đáp án là D.
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
Mua sách luyện olympic về hỏi cô jao nha,....
dk: x<=5/2
BPT <=> 5-2x <= 16
2x>=-11
x>=-11/2
=> x từ -11/2 đến 5/2 là : -5;-4;-3;-2;-1;0;1;2
Sach luyện thi Olympic mua o dau ban sao minh kiếm ko co
Thiếu vế phải rồi bạn
Sorry bn tai vua nay no bi loi