Bài 26 (trang 115 SGK Toán 9 Tập 1)
Cho đường tròn $(O)$, điểm $A$ nằm bên ngoài đường tròn. Kẻ các tiếp tuyến $AB$, $AC$ với đường tròn ($B$, $C$ là các tiếp điểm).
a) Chứng minh rằng $OA$ vuông góc với $BC$.
b) Vẽ đường kính $CD$. Chứng minh rằng $BD$ song song với $AO$.
c) Tính độ dài các cạnh của tam giác $ABC$; biết $OB = 2$cm, $OA = 4$cm.
Bạn tự vẽ hình nha
a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).
Xét ΔCBD có :
CI = IB
CO = OD (bán kính)
⇒ BD // OI (OI là đường trung bình của tam giác BCD).
Vậy BD // AO.
c) Theo định lí Pitago trong tam giác vuông OAC:
AC^2 = OA^2 – OC^2 = 42 – 22 = 12
=> AC = √12 = 2√3 (cm)
\(\sin OAC=\frac{OC}{OA}=\frac{1}{2}\)
=> OAC =30 độ
mà BAC =2OAC
=. BAC =60
Tam giác ABC cân có BAC = 60 => Tam giác ABC đều
+> AB=AC=BC=2√3 (cm)
K cho mk nh
câu A : AB = AC ( theo tính chất của đường tiếp tuyến ) suy ra : tam giác ABC cân tại A , OA là đường phân giác cũng là đường cao vậy OA vuông góc với BC