Giải bất phương trình: \(\sqrt{4-x^2}+x^2lớnhơn4\)
Mình viết "lớn hơn" tại vì mình không tìm thấy kí hiệu ạ hihi. Mong mọ người giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
a: =>3x+3=4x-4
=>-x=-7
hay x=7(nhận)
b: (x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
c: 2(x-1)+x=0
=>2x-2+x=0
=>3x-2=0
hay x=2/3
a, ĐKXĐ : x ≠ 1 ; x ≠ -1
\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x+3=4x-4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\left(N\right)\)
b,
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c,
\(\Leftrightarrow2x-2+x=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
ĐK \(x\ge-4\)
\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)
\(\Rightarrow x\ge\frac{3}{2}\)
ĐK: \(x+4\ge0\) <=> \(x\ge-4\)
Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)
<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.
Vậy
\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)
a: 2/(x-2)=3/(x+2)
=>3x-6=2x+4
=>x=10
b: (x-2)(x+5)=0
=>x-2=0 hoặc x+5=0
=>x=2 hoặc x=-5
c: 2(x+2)-x=4
=>2x+4-x=4
=>x=0
\(a,\dfrac{2}{x-2}=\dfrac{3}{x+2}\)
\(\Leftrightarrow\dfrac{2}{x-2}-\dfrac{3}{x+2}=0\)
\(\Leftrightarrow\dfrac{2\left(x+2\right)-3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2x+4-3x+6=0\)
\(\Leftrightarrow-x+10=0\)
\(\Leftrightarrow-x=-10\)
\(\Leftrightarrow x=10\)
\(b,\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(c,2\left(x+2\right)-x=4\)
\(\Leftrightarrow2x+4-x-4=0\)
\(\Leftrightarrow x=0\)
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
`\sqrt{4-x^2}+x^2 > 4` `ĐK: -2 <= x <= 2`
`<=>\sqrt{4-x^2}-(4-x^2) > 0`
`<=>\sqrt{4-x^2}(1-\sqrt{4-x^2}) > 0`
Mà `\sqrt{4-x^2} > 0 AA -2 < x < 2`
`=>1-\sqrt{4-x^2} > 0`
`<=>\sqrt{4-x^2} < 1`
`<=>4-x^2 < 1`
`<=>x^2 > 3`
`<=>[(x > \sqrt{3}),(x < -\sqrt{3}):}`
Kết hợp `-2 < x < 2`
` =>[(-2 < x < -\sqrt{3}),(\sqrt{3} < x < 2):}`