y= \(\dfrac{1}{3}\)\(x^3\)+(m+1)\(x^2\)+(m+3)x+2m
m=? hàm số đồng biến trong (0,1);(2,∞)
Giúp mình với ! please ..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)
\(\Rightarrow\) Hàm đồng biến trên R
cho ham số bật nhất y=(2m-3)x+5. Tìm các giá trị cua m hàm số
a/ Đồng biến
b/ Nghịch biến
Chú ý ; Hàm số có dạng y = ax + b (a khác 0) đồng biến khi a > 0 , nghịch biến khi a < 0
Vậy :
a/ Hàm số đồng biến khi 2m-3 > 0 => m > 3/2
b/ Hàm số nghịch biến khi 2m-3 < 0 => m < 3/2
y'=1/3*3x^2+1/2*2x(m-1)+(2m-1)
=x^2+x(m-1)+2m-1
a: y đồng biến trên R thì y'>0 với mọi x thuộc R
Δ=(m-1)^2-4(2m-1)
=m^2-2m+1-8m+4=m^2-10m+5
Để y'>0 với mọi x thuộc R thì m^2-10m+5<0
=>5-2*căn 5<m<5+2căn 5
b: y đồng biến trên (-vô cực;-2) và (0;1) khi y'>0 với mọi x thuộc (-vô cực;-2) và (0;1)
y'=x^2+x(m-1)+2m-1
=x^2+xm-x+2m-1
=m(x+2)+x^2-x-1
y'>0 với x thuộc (-vô cực;-2)
=>m>-x^2+x+1/(x+2) với x thuộc (vô cực;-2)
g(x)=-x^2+x+1/(x+2)
g'=(-x^2+x+1)'(x+2)-(-x^2+x+1)(x+2)'/(x+2)^2
=(x+2+x^2-x-1)/(x+2)^2=(x^2+1)/(x+2)^2>0 với mọi x
=>m thuộc (-vô cực;-2)
Tương tự, ta cũng được: m thuộc (0;1)
Hàm số y = ax + b ( a ≠ 0 ) đồng biến trên R khi a> 0.
Do đó, để hàm số đã cho đồng biến trên R thì m 2 - 1 > 0 ⇔ [ m > 1 m < - 1
Chọn C.
Đáp án B
Từ bảng xét dấu f'(x) ta thấy trên khoảng ( - ∞ ; - 1 ) thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng ( - ∞ ; - 1 )