K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8\)

\(\Leftrightarrow2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8-2x\)

\(\Leftrightarrow4\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]=64-32x+4x^2\)

\(\Leftrightarrow4x^2-32x+64=64-32x+4x^2+\)

\(\Leftrightarrow64=64\) (Đúng)

⇒ Phương trình có vô số nghiệm.

Vậy \(S=\mathbb R\).

4 tháng 7 2023

Kết luận: phương trình vô số nghiệm

6 tháng 7 2023

\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)

\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)

\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)

Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)

\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)

Vậy \(P=\sqrt{2}\).

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

Đk: `x >= 0`.

`<=> sqrtx + sqrt(x+3) + 2sqrt(x(x+3)) - (3x+9) + 5x = 0`

Đặt `sqrt x = a, sqrt(x+3) = b`

`<=> a + b + 2ab - 3b^2 + 5a^2 = 0`

`<=> (a+b)(5a+1-3b) = 0`

`<=> a = -b` hoặc `5a + 1 = 3b`.

Đến đây bạn biến đổi ẩn rồi tự giải tiếp ha. 

26 tháng 2 2023

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

ĐK:.............

Đặt $\sqrt{2x^2+x+6}=a; \sqrt{x^2+x+2}=b$ với $a,b\geq 0$ thì PT trở thành:

$a+b=\frac{a^2-b^2}{x}$

$\Leftrightarrow (a+b)(\frac{a-b}{x}-1)=0$

Nếu $a+b=0$ thì do $a,b\geq 0$ nên $a=b=0$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}=0$ (vô lý)

Nếu $\frac{a-b}{x}-1=0$

$\Leftrightarrow a-b=x$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}+x$

$\Rightarrow 2x^2+x+6=2x^2+x+2+2x\sqrt{x^2+x+2}$ (bình phương 2 vế)

$\Leftrightarrow 2=x\sqrt{x^2+x+2}(1)$

$\Rightarrow 4=x^2(x^2+x+2)$

$\Leftrightarrow x^4+x^3+2x^2-4=0$

$\Leftrightarrow (x-1)(x^3+2x^2+4x+4)=0$

Từ $(1)$ ta có $x>0$. Do đó $x^3+2x^2+4x+4>0$ nên $x-1=0$

$\Rightarrow x=1$Vậy..........

 

\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)

=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)

=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)

=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)

=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)

=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)

=>Phương trình này có 2 nghiệm

31 tháng 8 2023

Tks bạn ạ