1.3+3.5+5.7+....+61.63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
=3.2/1.3.2+3.2/3.5.2+...+3.2/49.51
=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)
=3/2.(1-1/3+1/3-1/5+...+1/49-1/51)
=3/2.(1-1/51)
=3/2.50/51
=25/17
CHÚC BẠN HỌC GIỎI
K MÌNH NHÉ
A=3/2(2/3.5+2/5.7+...+2/61.63)
=3/2(1/3-1/5+1/5-1/7+...+1/61-1/63)= 3/2(1/3-1/63)=3/2 x 20/63=10/21
Đs: 10/21
Ta có: \(1-\dfrac{2}{3\cdot5}-\dfrac{2}{5\cdot7}-\dfrac{2}{7\cdot9}-...-\dfrac{2}{61\cdot63}-\dfrac{2}{63\cdot65}\)
\(=1-\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{61\cdot63}+\dfrac{2}{63\cdot65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{61}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{65}\right)\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)
\(=1-\dfrac{62}{195}\)
\(=\dfrac{133}{195}\)
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Ta đặt
\(A=1\times3+3\times5+...+61\times63\)
\(6A=1\times3\times6+3\times5\times6+....+61\times63\times6\)
\(6A=1\times3\times6+3\times5\times\left(7-1\right)+...+61\times63\times\left(65-59\right)\)
\(6A=1\times3\times6+3\times5\times7-1\times3\times5+...+61\times63\times65-59\times61\times63\)
\(6A=1\times3\times6-1\times3\times5+61\times63\times65\)
\(6A=3+61\times63\times65\)
\(6A=3\times\left(1+61\times21\times65\right)\)
\(2A=83266\)
\(A=83266\div2=41633\)