\(\dfrac{1}{3}\)+\(\dfrac{5}{6}\)*(x-\(\dfrac{11}{5}\))=\(\dfrac{3}{4}\).mọi ng cho mình lời giải chi tiết và cụ thể vs ạ. đây là bài tìm x ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{10}{11}\)
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)
M = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024
4.M = 1 + 1/4 + 1/16 + 1/64 + 1/256
4M - M = (1 + 1/4 + 1/16 + 1/64 + 1/256 ) - ( 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 )
3M = 1 - 1/1024
3M = 1023/1024
M = 341/1024
M=\(\dfrac{1}{4}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{256}\)+\(\dfrac{1}{1024}\)
=\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\)
=>4M=1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)
=>4M-M=3M=(1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\))-(\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\))=1-\(\dfrac{1}{4^5}\)=\(\dfrac{1023}{1024}\)
=>M=\(\dfrac{1023}{1024}\):3=\(\dfrac{341}{1024}\)
29\(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\) + 39\(\dfrac{1}{3}\)\(\times\)\(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{2}\) \(\times\) \(\dfrac{2}{3}\) + \(\dfrac{118}{3}\) \(\times\) \(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{3}\) + \(\dfrac{59}{2}\) + \(\dfrac{5}{6}\)
= \(\dfrac{295}{6}\) + \(\dfrac{5}{6}\)
= 50
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50
\(a,\left(\dfrac{31}{35}-\dfrac{4}{7}\right)\times\dfrac{8}{7}:2\\ =\left(\dfrac{31}{35}-\dfrac{4\times5}{35}\right)\times\dfrac{8}{7}:2\\ =\dfrac{11}{35}\times\dfrac{8}{7}:2\\ =\dfrac{88}{245}:2\\ =\dfrac{44}{245}\\ b,\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\left(\dfrac{2-1}{2}\right)\times\left(\dfrac{3-1}{3}\right)\times\left(\dfrac{4-1}{4}\right)\times\left(\dfrac{5-1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
a, ( \(\dfrac{31}{35}\) - \(\dfrac{4}{7}\)) \(\times\) \(\dfrac{8}{7}\): 2
= \(\left(\dfrac{31}{35}-\dfrac{20}{35}\right)\) \(\times\) \(\dfrac{8}{7}\) : 2
= \(\dfrac{11}{35}\) \(\times\) \(\dfrac{8}{7}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{44}{35}\) \(\times\) \(\dfrac{4}{7}\)
= \(\dfrac{44}{245}\)
b, ( 1 - \(\dfrac{1}{2}\)) \(\times\) ( 1 - \(\dfrac{1}{3}\)) \(\times\) ( 1 - \(\dfrac{1}{4}\)) \(\times\) ( 1 - \(\dfrac{1}{5}\))
= \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{4}{5}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{2\times3\times4}{2\times3\times4}\)
= \(\dfrac{1}{5}\)
\(\dfrac{x-2}{5}=\dfrac{1-x}{6}\\ =>\left(x-2\right)\cdot6=\left(1-x\right)\cdot5\\ =>6x-12=5-5x\\ =>6x+5x=5+12\\ =>11x=17\\ x=\dfrac{17}{11}\)
\(\dfrac{1}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
a) x=24/35 -2/7
x=14/35
b) x=7/8+5/6
x=41/24
c) x-11/5=3/5
x=11/5+3/5
x=14/5
tick cho mình nhé
\(\dfrac{1}{3}+\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}\)
\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)
\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)
\(x-\dfrac{11}{5}=\dfrac{5}{12}\cdot\dfrac{6}{5}\)
\(x-\dfrac{11}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+\dfrac{11}{5}\)
\(x=\dfrac{27}{10}\)
\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)
\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)
\(x-\dfrac{11}{5}=\dfrac{5}{12}:\dfrac{5}{6}\)
\(x-\dfrac{11}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+\dfrac{11}{5}=\dfrac{27}{10}\)