K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC có 

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

2: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

3: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

17 tháng 8 2021

sao đéo có thg lồn nào giải vậy

 

28 tháng 11 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>CE\(\perp\)BE tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó;ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,D cùng nằm trên đường tròn đường kính AH

c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D

=>I là trung điểm của AH

Gọi giao điểm của AH với BC là M

AH\(\perp\)BC

nên AH\(\perp\)BC tại M

\(\widehat{BHM}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)

nên \(\widehat{BHM}=\widehat{IDH}\)

mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

OB=OD

=>ΔODB cân tại O

=>\(\widehat{OBD}=\widehat{ODB}\)

=>\(\widehat{ODH}=\widehat{DBC}\)

\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)

\(=\widehat{DBC}+\widehat{DCB}\)

\(=90^0\)

=>ID\(\perp\)DO

29 tháng 10 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

b: Gọi O là trung điểm của AH

ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>ADHE nội tiếp (O)

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH vuông góc BC tại M

ΔABC cân tại A

mà AM là đường cao

nên M là trung điểm của BC

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Xét tứ giác BEHM có

\(\widehat{BEH}+\widehat{BMH}=180^0\)

=>BEHM là tứ giác nội tiếp

\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)

\(=\widehat{OHE}+\widehat{MBD}\)

\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)

=>EM là tiếp tuyến của (O)

19 tháng 12 2023

P/S: Tính chất đường cao và đồng quy trong tam giác đã học từ năm lớp 7 rồi nha bạn

a: Ta có: ΔBEC vuông tại E

=>ΔBEC nội tiếp đường tròn đường kính BC(1)

Ta có: ΔBDC vuông tại D

=>ΔBDC nội tiếp đường tròn đường kính BC(2)

Từ (1) và (2) suy ra B,E,D,C cùng nằm trên đường tròn đường kính BC

Tâm O là trung điểm của BC

b: Xét ΔABC có 

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Ta có: AH\(\perp\)BC

EK\(\perp\)BC

Do đó: AH//EK

c: Ta có: ΔAHD vuông tại D

mà DI là đường trung tuyến

nên ID=IH

=>ΔIDH cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{BHM}\)(hai góc đối đỉnh)

và \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{DBC}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

Ta có: OD=OB

=>ΔODB cân tại O

=>\(\widehat{ODB}=\widehat{OBD}=\widehat{CBD}\)

Ta có: \(\widehat{IDO}=\widehat{IDH}+\widehat{ODB}\)

\(=\widehat{DBC}+\widehat{DCB}\)

=90 độ

=>ID là tiếp tuyến của (O)

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

O là trung điểm của AH

b:

XetΔACB có

BD,CE là đường cao

BD căt CE tại H

=>H là trực tâm

=>AH vuông góc BC

=>K là trung điểm của CB

góc ODK=góc ODH+góc KDH

=góc BHK+góc KBH=90 độ

=>KD là tiếp tuyến của (O)

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE

11 tháng 12 2017

A B C D E K M I H F

a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\) 

Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.

Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.

b) Xét tam giác BEC và tam giác BHM có : 

\(\widehat{BEC}=\widehat{BHM}=90^o\)

Góc B chung

\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)

Ta có \(BK^2=BD^2=BH.BC=BE.EM\)   mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)

Vậy MK là tiếp tuyến của đường tròn tâm B.

c) 

Gọi F là giao điểm của CE với đường tròn tâm B.

Do \(BE\perp KF\)nên MB là trung trực của FK.

\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.

\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)

Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)

Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.

Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)

Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.

\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)

Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)

\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)

\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)

10 tháng 12 2017

giúp mình với!!!! ai đúng mình k cho

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

Tâm là trung điểm của BC

Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC