tam giác abc vuông tại a có ah là đường cao gọi e và f là hình chiếu của h trên ab và ac cho bc=10, ab=8. tính hb,ah,ae diện tích abc diện tích aef diện tích befc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)
=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)
=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)
=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(AH=\dfrac{1}{4}\cdot BC\)
Gọi M là trung điểm của BC
=>AH vuông góc HM tại H
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{1}{2}BC\)=MB=MC
=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)
=>\(\widehat{AMB}=30^0\)
=>\(\widehat{AMC}=150^0\)
ΔMAC cân tại M
=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)
=>\(\widehat{ACB}=15^0\)
a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)
Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
Do đó \(\widehat{AEF}=\widehat{ACB}\)
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
a: CH=6cm
\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)
\(\widehat{C}=30^0\)
\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)
\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)
\(c,\) Dễ thấy AEHF là hcn
Do đó \(\widehat{HAF}=\widehat{EFA}\)
Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)
Do đó \(\widehat{EFA}=\widehat{HBA}\)
Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)
\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)
Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)
Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)
AC=căn 10^2-8^2=6cm
AH=6*8/10=4,8cm
AE=AH^2/AB=4,8^2/8=2,88cm
AF=AH^2/AC=4,8^2/6=3,84cm
S AEF=1/2*2,88*3,84=5,5296cm2
S ABC=1/2*6*8=24cm2
=>S BEFC=24-5,5296=18,4704cm2