K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017
  • \(A=-\left(y^2-\frac{2.1}{2}y+\frac{1}{4}\right)+\frac{1}{4}+2015=-\left(y-\frac{1}{2}\right)^2+\frac{8061}{4}\le\frac{8061}{4}\)\(\Rightarrow A_{max}=\frac{8061}{4}\)dấu "=" sảy ra khi \(y=\frac{1}{2}\)
  • \(B=|y-2|+\left(y^2-4y+4\right)-4+200=|y-2|+\left(y-2\right)^2+196\ge196\)\(\Rightarrow B_{Min}=196\)dấu "=" khi \(y=2\)
15 tháng 1 2018

a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)

Dấu "=" xảy ra khi x=-2

Vậy GTNN của A=50 khi x=-2

b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)

Dấu "=" xảy ra khi x=100,y=-200

Vậy GTNN của B=-1 khi x=100,y=-200

c, Đặt C = 2015-|x+5|

Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)

Dấu "=" xảy ra khi x=-5

Vậy GTLN của C = 2015 khi x = -5

22 tháng 10 2017

M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014

M=4.0+21xy.0+7x2y2.0+2014

M=0+0+0+2014=2014

nhớ

ko cho ko đâu

3 tháng 4 2019

Có x2015 + y2015 + z2015 = 3

Điều này xảy ra khi và chỉ khi x = y = z = 1

=> max của x2 + y2 + z2  = 3

Vậy...

13 tháng 7 2019

1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16

Ta luôn có: (x - 1)2 \(\ge\)\(\forall\)x --> -2(x - 1)2 \(\le\)\(\forall\)x

=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x

Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1

Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1

b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30

Ta luôn có: -2(x + 3)2 \(\le\)\(\forall\)x

=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x

Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3

Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3

13 tháng 7 2019

3.

a)\(x^2+15x-25=x^2+15x+56,25-81,25\) 

  \(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\) 

Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\) 

Vậy.....

b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\) 

  \(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\) 

Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\) 

Vậy.....

c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\) 

 \(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\) 

Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và   \(\left(y+1\right)^2=0\Leftrightarrow y=-1\) 

Vậy......