viết các tổng sau dưới dạng tích
9x^4+16y^6-2x^2y^3
Giúp em với em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
a, \(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)
b, \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
c, \(x^2-10x+25=x^2-2.5x+5^2=\left(x-5\right)^2\)
1. \(25+10x+x^2\\ \Leftrightarrow5^2+2\cdot5\cdot x+x^2\\ \Leftrightarrow\left(5+x\right)^2\\ \Leftrightarrow\left(5+x\right)\left(5+x\right)\)
2. \(8x^3-\dfrac{1}{8}\\ \Leftrightarrow\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[4x^2+x+\dfrac{1}{4}\right]\)
3. \(x^2-10x+25\\ \Leftrightarrow x^2-2\cdot5\cdot x+5^2\\ \Leftrightarrow\left(x-5\right)^2\\ \Leftrightarrow\left(x-5\right)\left(x-5\right)\)
1000=103
1000000=106
1 tỉ =109
1000000000000=1012
Có bao nhiêu chữ số 0 tận cùng thì lũy thừa có số mũ bấy nhiêu
\(a,=\left(x+\dfrac{5}{2}\right)^2\\ b,=\left(2x+3y\right)^2\\ c,=a^2+b^2+c^2+2ab-2bc-2ac\\ d,=\left(4x-1\right)^2\\ e,=a^2+b^2+c^2+2ab+2bc+2ac\\ f,=a^2+b^2+c^2-2ab+2bc-2ac\)
`a, 4x^2 - 25y^2 = (2x-5y)(2x+5y)`.
`b, 8x^3 +27 = (2x+3)(4x^2 - 6x + 9)`.
`c, 125x^3 - 64y^3 = (5x)^3 - (4y)^3 = (5x-4y)(25x^2 + 20xy + 16y^2)`.
\(a,\\ 4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\\ b,\\ 8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2+6x+9\right)\\ c,\\ 125x^3-64y^3=\left(5x\right)^3-\left(4y\right)^3=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)
a) (1/4)3 x (1/8)2
= [(1/2)2]3 x [(1/2)3]2
= (1/2)6 x (1/2)6
= (1/2)12
b) 42 x 32: 23
= (22)2 x 25: 23
= 24 x 25: 23
= 24 x 22
= 26
c) 25 x 53 x 1/625 x 53
= 52x 53 x (1/5)4 x 53
= (1/5)4 x 58
= 1/54 x 58 (giải thích nếu ko hiểu: (1/5)4= 14/54= 1/54)
= 58/54
= 54
d) 56 x 1/20 x 22 x 32 : 125
= 56/20 x (2x3)2 : 53
= 56/ (5x4) x 62: 53
= 55/4 x 62/53 (62/53 là dạng phân số, bản chất vẫn là lấy 62 chia 53)
= 55 x 62/ 4x 53 (nhân phân số: tử nhân tử, mẫu nhân mẫu)
= 52x 62/ 22 (chia 55 cho 53 ra 52)
= 302/ 22
= 152
*Kiến thức áp dụng:
amx an = am+n
am: an= am-n
(am)n = am x n
am x bm = (a x b)m
x - 4 + x - 4 + x - 4 + x - 4 = 4 . ( x - 4 ) = 4 . ( -5 - 4 ) = -36
A, \(\frac{9}{4}x^2+3x+4\)
= \(\left(\frac{3}{2}x^2\right)+2\cdot\frac{3}{2}x\cdot2+2^2\)
= \(\left(\frac{3}{2}x+2\right)^2\)
Sửa đề: -24x^2y^3
9x^4-24x^2y^3+16y^6
=9x^4-2*3x^2*4y^3+16y^6
=(3x^2-4y^3)^2