Xét một vật dao động điều hoà có biên độ 10cm, tần số 5Hz. Tại thời điểm ban đầu (t = 0) vật có li độ cực đại theo chiều dương.
- Xác định chu kì, tần số góc, pha ban đầu của dao động.
- Viết phương trình và vẽ đồ thị (x − t) của dao động.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biên độ A = 15 (cm)
Chu kì T = 120 (ms) = 0,12 (s)
Tần số f = \(\frac{{25}}{3}\) (Hz)
Tần số góc ω = \(\frac{{2\pi }}{T}\) = \(\frac{{2\pi }}{{0,12}}\)= \(\frac{{50\pi }}{3}\) (rad/s)
Pha ban đầu φ = \( - \frac{\pi }{2}\)
b) Phương trình dao động của vật là: x = 15cos(\(\frac{{50\pi }}{3}\)t −\(\frac{\pi }{2}\)) (cm)
a. Biên độ của dao động là: \(A=10\) (cm)
Tần số góc là: \(\omega=2\pi\) (rad/s)
Tần số là: \(f=\dfrac{\omega}{2\pi}=1\) (Hz)
Chu kì là: \(T=\dfrac{1}{f}=1\) (s)
b. Vận tốc và gia tốc cực đại lần lượt là:
\(v_{max}=\omega A=20\pi\) (cm/s)
\(a_{max}=\omega^2A=400\) (cm/s)
c. Phương trình vận tốc là:
\(v=20\pi\cos\left(2\pi t+\dfrac{\pi}{2}\right)\) (cm/s)
Biên độ: A=3
Tần số góc: pi
Chu kì: T=2pi/pi=2
Pha dao động: pi*t
Pha ban đầu: 2pi
Để xác định biên độ, tần số góc, chu kì và pha ban đầu của động, ta cần phân tích công thức của dao động và so sánh với công thức tổng quát.Công thức tổng quát của một dao động harmonic là:x = A * cos(ωt + φ)Trong đó:- x là vị trí của đối tượng tại thời điểm t.- A là biên độ của dao động.- ω là tần số góc của dao động.- t là thời gian.- φ là pha ban đầu của dao động.Trong công thức đã cho:x = -5cos(10πt + π/2)cmSo sánh với công thức tổng quát, ta có:A = -5 cm (biên độ)ω = 10π rad/s (tần số góc)φ = π/2 rad (pha ban đầu)Như vậy, biên độ của dao động là -5 cm, tần số góc là 10π rad/s, chu kì của dao động là T = 2π
Chu kì dao động là: \(T=\dfrac{1}{f}=\dfrac{1}{5}=0,2\left(s\right)\)
Tần số góc của dao động là: \(\omega=2\pi f=10\pi\left(rad/s\right)\)
Lúc t = 0, ta có: \(\left\{{}\begin{matrix}x=A\\v=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}cos\varphi=1\\sin\varphi=0\end{matrix}\right.\Rightarrow\varphi=0\)
Phương trình dao động là: \(x=10cos\left(10\pi t\right)cm\)
Vẽ đồ thị: