K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?

9 tháng 5 2021

Ko bạn

 

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:
$xy+yz+xz=\frac{1}{2}[(x+y+z)^2-(x^2+y^2+z^2)]=\frac{1}{2}(a^2-b^2)$

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}$

$\Rightarrow xyz=c(xy+yz+xz)=\frac{1}{2}c(a^2-b^2)$

Khi đó:

$P=(x+y+z)^3-3(x+y)(y+z)(x+z)$

$=(x+y+z)^3-3[(x+y+z)(xy+yz+xz)-xyz]=(x+y+z)^3-3(xy+yz+xz)(x+y+z)+3xyz$
$=a^3-\frac{3}{2}a(a^2-b^2)+\frac{3}{2}c(a^2-b^2)$

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

18 tháng 5 2021

b) Áp dụng bđt Svac-xơ:

\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)

=> hpt vô nghiệm

c) Ở đây x,y,z là các số thực dương

Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)

 

NV
8 tháng 3 2022

Không mất tính tổng quát, giả sử \(x\ge y\ge z\)

\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)

Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)

\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)

\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị