Bài 20.Cho tam giác ABC vuông tại A có AB < AC. Vẽ đường cao AH của tam giác ABC, vẽ AD là
phân giác của HAC ̂ (D ∈ HC). Vẽ DE ⊥ AC tại E.
a) Chứng minh rằng ∆ADH = ∆ADE, từ đó suy ra DH = DE.
b) Gọi K là giao điểm của AH và DE. Chứng minh rằng ∆DKC cân.
c) Gọi F là trung điểm của KC. Chứng minh 3 điểm A, D, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: I là trực tâm của ΔBAD
=>DI vuông góc AB
=>DI//AC
=>góc BDI=góc ACB
DT là phân giác của góc IDB
=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB
DI//AC
=>góc IDA=góc DAC
AD là phân giác của góc HAC
=>góc DAC=1/2*góc HAC
=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ
=>góc IDT+góc IDA=1/2*90=45 độ
=>góc TDA=45 độ
=>ΔTDA vuông cân
xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :
góc HAD= góc EAD( vì AD là phân giác của góc HAC).
AD chung.
do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).
=>HD=DE.
xét tam giác HDK và tam giác EDC có:
góc AHD= góc CED=90 độ.
HD=DE.
góc HDK= góc EDC( 2 góc đối đỉnh)
do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D
a: Xet ΔCAH vuông tại H và ΔCBA vuông tại A có
góc C chung
=>ΔCAH đồng dạng với ΔCBA
=>CA/CB=CH/CA
=>CA^2=CH*CB
b: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
=>góc ABD=góc ADB
=>góc HAD=góc EAD
=>ΔAHD=ΔAED
=>AH=AE
=>ΔAHE cân tại A
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(AB=\dfrac{4}{5}BC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=30\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{5}\cdot BC=\dfrac{4}{5}\cdot30=24\left(cm\right)\)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{24}=\dfrac{CD}{30}\)
mà AD+CD=AC=18cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{24}=\dfrac{CD}{30}=\dfrac{AD+CD}{24+30}=\dfrac{18}{54}=\dfrac{1}{3}\)
Do đó:
\(\left\{{}\begin{matrix}AD=\dfrac{1}{3}\cdot24=8\left(cm\right)\\CD=\dfrac{1}{3}\cdot30=10\left(cm\right)\end{matrix}\right.\)
Vậy: AD=8cm; CD=10cm
b) Xét ΔHAC vuông tại A và ΔHEB vuông tại E có
\(\widehat{AHC}=\widehat{EHB}\)(hai góc đối đỉnh)
Do đó: ΔHAC\(\sim\)ΔHEB(g-g)
c) Xét ΔAFB vuông tại A và ΔAHC vuông tại A có
\(\widehat{ABF}=\widehat{ACH}\left(=90^0-\widehat{AFB}\right)\)
Do đó: ΔAFB\(\sim\)ΔAHC(g-g)
Suy ra: \(\dfrac{AF}{AH}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AC=AB\cdot AH=AB\cdot\dfrac{1}{3}AB=\dfrac{1}{3}AB^2\)(đpcm)
a: Xét ΔADH vuông tại H và ΔADE vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔADH=ΔADE
=>Dh=DE
b: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
c: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
=>ΔAKC cân tại A
mà AF là trung tuyến
nên AF là phân giác của góc KAC
=>A,D,F thẳng hàng