K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Xét tứ giác OBMA có \(\widehat{OBM}+\widehat{OAM}=90^0+90^0=180^0\)

nên OBMA là tứ giác nội tiếp

=>O,B,M,A cùng thuộc một đường tròn

b: Ta có: ΔOBC cân tại O

mà OM là đường cao

nên OM là phân giác của góc BOC

Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}\)

mà \(\widehat{OBM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

18 tháng 12 2023

loading... a) Gọi D là trung điểm của MO

∆OAM vuông tại A có AD là đường trung tuyến ứng với cạnh huyền OM

⇒ AD = OD = MD = OM : 2   (1)

∆OBM vuông tại B có BD là đường trung tuyến ứng với cạnh huyền OM

⇒ BD = OD = MD = OM : 2   (2)

Từ (1) và (2) ⇒ AD = BD = OD = MD

Vậy A, B, O, M cùng thuộc (D, AD)

b) Xét hai tam giác vuông: ∆OHB và ∆OHC có:

OH là cạnh chung

OB = OC = bán kính

⇒ ∆OHB = ∆OHC (cạnh huyền - cạnh góc vuông)

⇒ ∠HOB = ∠HOC (hai góc tương ứng)

⇒ ∠MOB = ∠MOC

Xét ∆MOB và ∆MOC có:

OM là cạnh chung

∠MOB = ∠MOC (cmt)

OB = OC = bán kính)

⇒ ∆MOB = ∆MOC (c-g-c)

⇒ ∠OBM = ∠OCM (hai góc tương ứng)

⇒ ∠OCM = 90⁰

⇒ MC ⊥ OC

Mà OC là bán kính của (O)

⇒ MC là tiếp tuyến của (O)

NV
22 tháng 4 2023

Đặt chu vi COH là \(P=OC+OH+CH\)

Ta có:

\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)

Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H

\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ

//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá

a: góc AEB=1/2*sđ cung AB=90 độ

Vì góc DHB+góc DEB=180 độ

nên DHBE nội tiếp

b: Xét ΔADC và ΔACE co

góc ACH=góc AEC(=góc ABC)

góc DAC chung

=>ΔADC đồng dạng với ΔACE
=>DC/EC=AD/AC
=>DC*AC=EC*AD

a: góc OBA+góc OCA=90+90=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC