K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Mã Tùng Lâm

Cho tam giác ABC vuông tại A,Kẻ DE vuông góc với BC,Gọi F là giao điểm của AB và DE,Chứng minh BD là đường trung trực của AE,Chứng minh DF = DC,Chứng minh AD DC,Chứng minh AE // FC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

d, ta có BA + AF = BF
BE + EC = BC
 mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC 
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2              (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2            (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC

7 tháng 6 2017

a xét 2 tg vuông ABD và EBD có
góc A1 = góc E1
góc B1 = góc B2
BD cạnh chung
=> tg ABD= tg EBD
=> BA = BE
=> tg ABE cân
ta có trong tg cân đg phân giác hạ từ đỉnh xuống cạnh đối diện cũng là đg trug trực của tg
hay bd là đg trug trực của ae
b, xét 2 tg vuông ADF và EDC có
góc A2 = góc E2
AD = BE ( tg ABD = tg EBD )
góc D1 = góc D2 ( đối đỉnh )
=> tg ADF = tg EDC
=> DF = DC

cta có tg EDC có DC > DE ( ch > cgv )
mà AD = ED
=> AD < DC 
d, ta có BA + AF = BF
BE + EC = BC
 mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC 
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2              (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2            (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC

11 tháng 8 2021

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc FC

8 tháng 3 2018

a, Xét tam giác ABD và EBD có : 

cạnh huyền DB chung 

góc ABD=EBD ( vì BD là tia phân giác )

=> tam giác ABD=EBD ( ch-gn )

=> DA=DE

8 tháng 3 2018

b, vì tam giác ABD=EBD nên AB=BE 

Nên tam giác ABE cân ở B 

Có BE là phân giác nên cũng là đường cao => BD vuông với AE tại H.

2 tháng 3 2018

N ở đâu bạn 

bạn có thể tự vẽ hình ,nếu ko thì ib mk gửi 

a) xét tam giác vuông  ABD và tam giác  vuông EBD 

BD chung 

ABD = EBD (phân giác )

=> tam giác vuông BAD= tam giác vuông  BED (cạnh huyền - góc nhọn )

=> DA=DE 

b)

có tam giác BAD = tam giác BED ( câu a ) 

=> AB=BE        

xét tam giác ABH  và tam giác EBH 

AB=BE (cmt)

ABH = EBH (fân giác )

BH chung 

=> tam giác ABH =  tam giác EBH ( c-g-c) 

=> BHA =BHE  mà BHA +BHE = 180 => BHA = BHE = 90 => BH  vuông AE tại H 

c)  có tam giác ABC  vuông A  => \(AB^2+AC^2=BC^2\)

 \(3^2+4^2=BC^2\)

=> \(BC^2=25\Rightarrow BC=5\left(CM\right)\)

D) 'N' Ở ĐÂU BẠN 

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha