bài này mk chỉ cần ý d thui giúp giải nhá
Cho tam giác ABC vuông tại A, có BD là tia phân giác của B, kẻ DE vuông góc với BC ( E thuộc BC ). Gọi F là giao điểm của AB và DE. chứng minh rằng :
a, BD là đg trung trực của AE
b, DF=DC
c, AD<DC
d, AE // FC
Mã Tùng Lâm
d, ta có BA + AF = BF
BE + EC = BC
mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2 (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2 (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC
a xét 2 tg vuông ABD và EBD có
góc A1 = góc E1
góc B1 = góc B2
BD cạnh chung
=> tg ABD= tg EBD
=> BA = BE
=> tg ABE cân
ta có trong tg cân đg phân giác hạ từ đỉnh xuống cạnh đối diện cũng là đg trug trực của tg
hay bd là đg trug trực của ae
b, xét 2 tg vuông ADF và EDC có
góc A2 = góc E2
AD = BE ( tg ABD = tg EBD )
góc D1 = góc D2 ( đối đỉnh )
=> tg ADF = tg EDC
=> DF = DC
cta có tg EDC có DC > DE ( ch > cgv )
mà AD = ED
=> AD < DC
d, ta có BA + AF = BF
BE + EC = BC
mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2 (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2 (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC