Cho x,y là các số thỏa mãn:(x+6)2+|y-7|=0. Khi đó x+y=........
Các bạn làm hộ mk nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu thế vào, Ta có:
x=12,y=5
Vậy x+y=17.Toán vòng 11 olympic chứ gì, mình thi rồi.
Đặt \(\frac{x}{3}=-\frac{y}{7}=k\Rightarrow x=3k;y=-7k\)
Ta có: xy=-189
=> 3k.(-7k)=-189
=> -21k2=-189
=> k2=(-189):(-21)
=> k2=9=32=(-3)2
=> k=3 hoặc k=-3
TH1: k=3 => x=3k=3.3=9
=> y=-7k=-7.3=-21
Mà x < y nên loại TH1.
TH2: k=-3 => x=3k=3.(-3)=-9
=> y=-7k=-7.(-3)=21
Vì x < y mà -9 < 21 nên chọn
Vậy x=-9.
a. Ta thay : |x| > hoac = 0 => 3|x| > hoac = 0
Tuong tu 2|y| > hoac = 0
Ma 3|x|+2|y| = 0
=> 3|x| = 0 => x = 0
=> 2|y| = 0 => y=0
Vay: x=y=0
ta có |x-2| \(\ge\)0 và (y+1)^2\(\ge\)0 mà |x-2|+(y+1)^2=0
=>|x-2|=0 và (y+1)^2=0
(=)x=2 và y=-1
=>x+y=2+(-1)=-1
Từ giả thiết suy ra (ay+bx)/xy = (bz+cy)/yz =(cx+az)/xz hay a/x =b/y =c/z.
dặt x/a =y=b =z/c =k suy ra x =ak; y=bk; z=ck. thay vào biểu thức bài cho tìm được k=1/2
vậy x =a/2; y=b/2; z=c/2
\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\left(1\right)\)
\(\Rightarrow\)\(\frac{xyz}{ayz+bxz}\)=\(\frac{xyz}{bzx+cyx}\)=\(\frac{zyx}{cxy+azy}\)
\(\Rightarrow\)\(ayz+bxz=bzx+cyx=cxy+azy\)
\(\Rightarrow\)\(\hept{\begin{cases}ayz+bxz=bxz+cyx\\bzx+cyx=cxy+azy\\ayz+bxz=cxy+azy\end{cases}}\Rightarrow\hept{\begin{cases}ayz=cyx\\bzx=azy\\bxz=cxy\end{cases}}\)\(\Rightarrow\hept{\begin{cases}az=cx\\bx=ay\\bz=cy\end{cases}\left(2\right)}\)
thay (2) vào (1)
\(\Rightarrow\)\(\frac{xy}{2ay}\)=\(\frac{yz}{2bz}\)=\(\frac{zx}{2cx}\)
\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}\)\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\left(\frac{x}{2a}\right)^2=\left(\frac{y}{2b}\right)^2=\left(\frac{z}{2c}\right)^2\)
\(\Rightarrow\text{}\text{}\)\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}\)
theo quy luật của dãy số bằng nhau, nên
\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\)\(\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{\left(x^2+y^2+z^2\right)}{4\left(a^2+b^2+c^2\right)}=\frac{1}{4}\left(4\right)\)
từ (3) và (4)
\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\c=\frac{c}{2}\end{cases}}\)
Do ( x+6) ^2 > = 0 với mọi x
/ y - 7 / > = 0 với mọi x
=> x = -6 , y = 7
=> x + y = 1
Vì \(\hept{\begin{cases}\left(x+6\right)^2\ge0\forall x\\\left|y-7\right|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+6\right)^2+\left|y-7\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+6\right)^2=0\\\left|y-7\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+6=0\\y-7=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-6\\y=7\end{cases}}}\)
\(\Rightarrow x+y=-6+7=1\)