Tính: căn (10 + 2 căn 21) + 4 căn( căn 3 - căn 7)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)
b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
c: \(=2\sqrt{21}\)
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)
b) Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(=-\sqrt{1}+\sqrt{100}\)
\(=\left(-1\right)+10\)
\(=9.\)
Vì \(9=9.\)
\(\Rightarrow\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\left(đpcm\right).\)
Chúc bạn học tốt!
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)
\(=1\)
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)
=0
Câu 2:
a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)
b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)
c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)
d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)
\(\sqrt{10+2\sqrt{21}}+4\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\sqrt{(\sqrt{3})^2+2\sqrt{3}.\sqrt{7}+\left(\sqrt{7}\right)^2}+4\left|\sqrt{3}-\sqrt{7}\right|\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}+4\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{3}+\sqrt{7}+4\left(\sqrt{7}-\sqrt{3}\right)\)
\(=5\sqrt{7}-3\sqrt{3}\)