K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

a, \(\frac{2011}{2012}\)và  \(\frac{2012}{2011}\)

Vì \(\frac{2011}{2012}\)có Tử số bé hơn Mẫu số nên phân số đó < 1 ; \(\frac{2012}{2011}\)có Tử số lớn hơn Mẫu số nên phân số đó > 1 

=> \(\frac{2011}{2012}< \frac{2012}{2011}\)

b, \(\frac{2000}{2013}\)và  \(\frac{2011}{2012}\)

Ta có: 

\(\frac{2000}{2013}=\frac{2000}{2013}+\frac{13}{2013}\)  ;  \(\frac{2011}{2012}=\frac{2011}{2012}+\frac{1}{2012}\)

Ta thấy \(\frac{13}{2013}>\frac{1}{2012}\)

\(\Rightarrow\frac{2000}{2013}< \frac{2011}{2012}\)

13 tháng 6 2017

a,2011/2012<2012/2011

b,2000/2013<2011/2012

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

15 tháng 3 2018

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q 

Vậy P > Q

b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b

\(\Rightarrow a.b=420.21=8820\)

Ta có:

\(ab=8820\)

\(a+21=b\Rightarrow b-a=21\)

Hai số cách nhau 21 mà có tích là 8820 là 84 , 105

Mà a + 21 = b suy ra a < b

Vậy a = 84 ; b = 105

15 tháng 3 2018

a,-Cách khác:

-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)

\(\Rightarrow P>Q\)

7 tháng 4 2019

Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)

    Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\)                        ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)

 \(\Rightarrow B>A\)

7 tháng 4 2019

nhầm là A > B

17 tháng 3 2019

\(\frac{2010}{2011}\)\(\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}\)\(\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}\)\(\frac{2012}{2011+2012+2013}\)

=> \(\frac{2010}{2011}\)\(\frac{2011}{2012}\)\(\frac{2012}{2013}\)\(\frac{2010+2011+2012}{2011+2012+2013}\)

=> P > Q

6 tháng 3 2015

Gọi 2011 là a

2012 là b;2013 là c

=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)

=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)

b+c>a+c;b2+ac>bc

Vậy A>B

 

23 tháng 5 2016

mỗi  số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15

23 tháng 5 2016

ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

hay tong tren be hon 15

23 tháng 4 2016

Ta có:

Q=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013

Mà 2010/2011+2012+2013<2010/2011

      2011/2011+2012+2013<2011/2012

      2012/2011+2012+2013<2012/2013

=>Q<P

21 tháng 3 2019

ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)

\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)

....

21 tháng 3 2019

Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

          \(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

CỘNG VẾ THEO VẾ,TA CÓ:

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)

\(\Rightarrow A>B\)

Vậy A>B

20 tháng 4 2016

P > Q  không phải toán lớp 6

20 tháng 4 2016

P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

     \(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

     \(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

 => \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

                    P                         >                                         Q