K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

\(a,\sqrt{72x}\) xác định \(\Leftrightarrow72x\ge0\Leftrightarrow x\ge0\)

\(b,\dfrac{2x+3}{\sqrt{x^2-4}}\) xác định \(\Leftrightarrow x^2-4>0\Leftrightarrow\left(x-2\right)\left(x+2\right)>0\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

\(c,\sqrt{\left(2x+1\right)\left(x+2\right)}\) xác định \(\Leftrightarrow\left(2x+1\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2x+1\ge0\\x+2\ge0\end{matrix}\right.\\\left[{}\begin{matrix}2x+1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ge-2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\)

\(d,3-\sqrt{16x^2-1}\) xác định \(\Leftrightarrow16x^2-1\ge0\Leftrightarrow\left(4x-1\right)\left(4x+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}4x-1\ge0\\4x+1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}4x-1\le0\\4x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ge-\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x\le\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)

\(e,\sqrt{\dfrac{3+x}{4-x}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3+x\ge0\\4-x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-3\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

 

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

26 tháng 6 2021

a)đk:`2x-4>=0`

`<=>2x>=4`

`<=>x>=2.`

b)đk:`3/(-2x+1)>=0`

Mà `3>0`

`=>-2x+1>=0`

`<=>1>=2x`

`<=>x<=1/2`

c)`đk:(-3x+5)/(-4)>=0`

`<=>(3x-5)/4>=0`

`<=>3x-5>=0`

`<=>3x>=5`

`<=>x>=5/3`

d)`đk:-5(-2x+6)>=0`

`<=>-2x+6<=0`

`<=>2x-6>=0`

`<=>2x>=6`

`<=>x>=3`

e)`đk:(x^2+2)(x-3)>=0`

Mà `x^2+2>=2>0`

`<=>x-3>=0`

`<=>x>=3`

f)`đk:(x^2+5)/(-x+2)>=0`

Mà `x^2+5>=5>0`

`<=>-x+2>0`

`<=>-x>=-2`

`<=>x<=2`

26 tháng 6 2021

a, ĐKXĐ : \(2x-4\ge0\)

\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)

Vậy ..

b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow-2x+1>0\)

\(\Leftrightarrow x< \dfrac{1}{2}\)

Vậy ..

c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)

\(\Leftrightarrow-3x+5\le0\)

\(\Leftrightarrow x\ge\dfrac{5}{3}\)

Vậy ...

d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)

\(\Leftrightarrow-2x+6\le0\)

\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)

Vậy ...

e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow x-3\ge0\)

\(\Leftrightarrow x\ge3\)

Vậy ...

f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow-x+2>0\)

\(\Leftrightarrow x< 2\)

Vậy ...

27 tháng 8 2021

Xin lỗi nha câu e) là:

e)\(\sqrt{\left(1-2x\right)^2}=|x-1|\)

27 tháng 8 2021

a) \(\sqrt{2x-1}=3\left(đk:x\ge\dfrac{1}{2}\right)\)

\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Leftrightarrow x=5\)(thỏa đk)

b) \(\sqrt{1-3x}=\dfrac{1}{2}\left(đk:x\le\dfrac{1}{3}\right)\)

\(\Leftrightarrow1-3x=\dfrac{1}{4}\Leftrightarrow3x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)(thỏa đk)

c) \(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)

\(\Leftrightarrow\left|x-1\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=-\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left|1+2x\right|=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}1+2x=\dfrac{\sqrt{3}}{2}\\1+2x=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{3}}{4}\\x=-\dfrac{2+\sqrt{3}}{4}\end{matrix}\right.\)

e) \(\sqrt{\left(1-2x\right)^2}=\left|x-1\right|\)

\(\Leftrightarrow\left|1-2x\right|=\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=x-1\\1-2x=1-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=0\end{matrix}\right.\)

20 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x\sqrt{x^2+1}}{x}-\dfrac{2x}{x}+\dfrac{1}{x}}{\sqrt[3]{\dfrac{2x^3}{x^3}-\dfrac{2x}{x^3}}+\dfrac{1}{x}}=0\)

b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{8x^7}{x^7}}{\dfrac{\left(-2x^7\right)}{x^7}}=-\dfrac{8}{2^7}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)

a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow x=30^o\)

b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=30^o\)

c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)

d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)

 

Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(

e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)

f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)

2 tháng 10 2023

a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:

\(\left(x-3\right)\left(7-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3\le x\le7\)

c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:

\(\left(2x-5\right)\left(2x+5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x>2\)

 

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290