K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Mặt đáy: \(ABCD\)

Các mặt bên: \(IAD\); \(IAB\); \(IBC\); \(ICD\)

b) Các cạnh bên bằng nhau: \(IB = IC = 18\)cm

Các cạnh đáy bằng nhau: \(BC = AB = 14\)cm

c) Đoạn thẳng \(IH\) là đường cao của hình chóp

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Đỉnh: \(M\)

Mặt đáy: \(ABC\)

Các mặt bên: \(MAB\); \(MAC\); \(MBC\)

b) Các cạnh bên bằng nhau: \(MA = MC = 17\)cm

Các cạnh đáy bằng nhau: \(BC = AB = 13\)cm

c) Đoạn thẳng \(MO\) là đường cao của hình chóp tam giác đều \(M.ABC\)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Hình chóp tứ giác đều \(S.MNPQ\) có:

a) Mặt bên: \(SMN\); \(SNP\); \(SPQ\); \(SMQ\)

Mặt đáy: \(MNPQ\)

b) Các cạnh bên bằng nhau: \(SM = SN = SP = SQ = 15\)cm

Các cạnh đáy bằng nhau: \(MN = NP = PQ = MQ = 8\)cm

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

- Mặt bên: \(MAB\), \(MAC\), \(MBC\)

- Mặt đáy: \(ABC\)

- Đường cao: \(MO\)

- Độ dài cạnh bên: \(15\)cm

- Độ dài cạnh đáy: \(10\)cm

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Hình chóp tam giác đều \(S.DEF\) có:

a) Mặt bên: \(SDE\); \(SDF\); \(SEF\)

Mặt đáy: \(DEF\)

b) Các cạnh bên bằng nhau: \(SE = SF = SD = 5\)cm

Các cạnh đáy bằng nhau: \(ED = EF = DF = 3\)cm

c) Đáy \(DEF\) là tam giác đều nên ba góc ở đáy bằng nhau và bằng \(60^\circ \)

23 tháng 5 2017
  Chóp tam giác đều Chóp tứ giác đều Chóp ngũ giác đều Chóp lục giác đều
Đáy Tam giác đều Hình vuông Ngũ giác đều Lục giác đều
Mặt bên Tam giác cân Tam giác cân Tam giác cân Tam giác cân
Số cạnh đáy 3 4 5 6
Số cạnh 6 8 10 12
Số mặt 4 5 6 7
HQ
Hà Quang Minh
Giáo viên
21 tháng 7 2023

Các mặt bên là MAB, MAC, MBC

Các cạnh bên là MA = MB = MC = 15cm

Đường cao là MO

Các cạnh đáy là AB = AC = BC =10cm

 

 

21 tháng 7 2023

Mặt bên: ΔAMB; ΔBMC; ΔAMC

Mặt đáy: ΔABC

Độ dài cạnh bên: 15cm

Độ dài cạnh đáy: 10cm

11 tháng 11 2019

1 tháng 8 2018

Chọn A

Phương pháp:

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.

Cách giải

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(O\) và \(O'\) lần lượt là tâm của hai đáy.

Kẻ \(B'H \bot B{\rm{D}}\left( {H \in B{\rm{D}}} \right),B'K \bot BC\left( {K \in BC} \right)\)

\(\begin{array}{l}B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = 2a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = a\sqrt 2 \\B'D' = \sqrt {A'B{'^2} + A'{\rm{D}}{{\rm{'}}^2}}  = a\sqrt 2  \Rightarrow B'O' = \frac{1}{2}B'{\rm{D'}} = \frac{{a\sqrt 2 }}{2}\end{array}\)

\(OO'B'H\) là hình chữ nhật \( \Rightarrow OH = B'O' = \frac{{a\sqrt 2 }}{2},B'H = OO' = a\)

\( \Rightarrow BH = BO - OH = \frac{{a\sqrt 2 }}{2}\)

Tam giác \(BB'H\) vuông tại \(H\) có: \(BB' = \sqrt {B'{H^2} + B{H^2}}  = \frac{{a\sqrt 6 }}{2}\)

\(BCC'B'\) là hình thang cân \( \Rightarrow BK = \frac{{BC - B'C'}}{2} = \frac{a}{2}\)

Tam giác \(BB'K\) vuông tại \(K\) có: \(B'K = \sqrt {BB{'^2} - B{K^2}}  = \frac{{a\sqrt 5 }}{2}\)