Thuwcj hiện phép tính:
a, A=\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(\Rightarrow\hept{\begin{cases}x=a-b\\y=a-c\\z=b-c\end{cases}}\)
Ta được
\(B=\frac{1}{axy}+\frac{1}{bxz}+\frac{1}{cyz}=\frac{bcz-acy+abx}{abcxyz}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b+b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b\right)-ac\left(b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{c\left(b-c\right)\left(b-a\right)+a\left(a-b\right)\left(b-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{1)}{abc}\)
Vậy ...
Ta có:
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)
\(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+c\right)\)(1)
\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)
\(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)
\(=\left(b-c\right)\left(a+b+c\right)\)(2)
\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)
\(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)
\(=\left(c-a\right)\left(a+b+c\right)\)(3)
Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)
Thế (1),(2),(3) vào (*)
=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
Dễ thôi bạn chỉ cần quy đồng thôi
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)
Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)
\(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)
Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)
\(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)
\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)
Kí hiệu biểu thức đã cho bởi \(Q\),ta có :
\(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Chứng minh tương tự,ta được:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)
Ta có :
\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)
Lại có :
\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)
Từ (1) và (2) \(\RightarrowĐPCM\)
fgdcxynfyjfyj
jffxhn