Chiều dài một hình chữ nhật giảm 3m. Chiều rộng tăng 20/100. Diện tích mới hơn diện tích cũ 8/100. Tìm chiều dài mới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng của hình chữ nhật là x(m) và y(m)
(ĐK: x > 15; x > y)
Chiều dài hơn chiều rộng 15m nên x - y = 15 (1)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới kém diện tích cũ 42m2 nên ta có pt:
xy - (x+4)(y-3) = 42
⇔ xy - xy + 3x - 4y + 12 = 42
⇔ 3x - 4y = 30 (2)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}x-y=15\\3x-4y=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-4y=60\\3x-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\\3\cdot30-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\left(tmđk\right)\\y=15\left(tmđk\right)\end{matrix}\right.\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 15m
Gọi x là chiều rộng của HCN (x>0) (m)
=> Chiều dài: 15+x (m)
Diện tích thực tế: x.(15+x) (m2)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới sẽ là: (x-3).(15+x+4)= (x-3).(19+x)
Vì diện tích giả sử kém diện tích cũ 42m2 nên ta có pt:
x.(15+x)= [(x-3).(19+x)]+42
<=>x2 +15x -x2 -16x= 42-57
<=> -x =-15
<=>x=15(TM)
Vậy chiều rộng HCN có độ dài 15m, chiều dài HCN có độ dài 30m.
Gọi chiều rộng của khu đất là x (m) (x > 3)
Chiều dài của khu đất là x + 10 (m)
Diện tích của khu đất là x(x + 10) ( m 2 )
Khi tăng chiều dài thêm 6m thì chiều dài của khu đất là x + 10 + 6 = x + 16 (m)
Khi giảm chiều rộng đi 3m thì chiều rộng của khu đất là x - 3 (m)
Diện tích của khu đất lúc này là (x – 3)(x + 16)
Vì diện tích mới tăng hơn diện tích cũ là 12 m 2 nên ta có phương trình:
(x – 3)(x + 16) = x(x + 10) + 12
⇔ x 2 + 13 x – 48 = x 2 + 10 x + 12
⇔ 3x = 60
⇔ x = 20 (tm đk)
Vậy chiều rộng của khu đất là 20 m, chiều dài của khu đất là 20 + 10 = 30m
Gọi \(x\left(m\right)\left(x>0\right)\) là chiều rộng
\(x+10\left(m\right)\) là chiều dài
Theo đề, ta có pt :
\(\left(x+10+6\right)\left(x-3\right)=x\left(x+10\right)+42\)
\(\Leftrightarrow\left(x+16\right)\left(x-3\right)=x^2+10x+42\)
\(\Leftrightarrow x^2-3x+16x-48=x^2+10x+42\)
\(\Leftrightarrow3x=90\\ \Leftrightarrow x=30\left(tmdk\right)\)
Chiều dài khu đất là : \(30+10=40\left(m\right)\)
Vậy chiều rộng là \(30m\), chiều dài là \(40m\).
Lời giải:
Gọi chiều dài và chiều rộng ban đầu là $a,b$ (cm)
Chiều dài mới: $a+22$ (cm)
Chiều rộng mới: $a(100-11):100=0,89b$ (cm)
Diện tích mới:
$0,89b(a+22)$ (cm2)
Diện tích cũ: $ab$ (cm2)
Theo bài ra: $0,89b(a+22)(100+2,1):100=ab$
$0,90869b(a+22)=ab$
Vì $b\neq 0$ nên $0,90869(a+22)=a$
$\Rightarrow a=219$ (cm)
gọi chiều rộng hcn là x
thì chiều dài hcn là x +10
diện tích ban đầu là x(x+10)
chiều rộng sau khi giảm là x - 3
chiều dài sau khi tăng là x + 10 +6
ta có:
( x - 3 ) ( x+10+6) = x(x+10) +12
=> x2 + 10x + 6x -3x - 30 - 18 = x2 + 10x +12
=> x2 - x2 + 10x +6x - 3x -10x = 12 +30 +18
=> 3x = 60
=> x = 20
vậy chiều rộng là 20m
=> chiều dài là : 20 +10 = 30m
Chiều dài mới bằng: 1,05 : 0,84 = 1,25 chiều dài cũ, tăng 0,25 chiều dài cũ hay 36m.
Vậy chiều dài cũ:
36:0,25=144m
Chiều dài mới :
144+36=180 m
k nhé