Bài 8: Cho hình bình hành ABCD. Trên các cạnh AB,CD lần lượt lấy E,F sao cho AE=CF.Cm
a, Tứ giác AECF là hình bình hành
b,BF song song với ED
c, AC,EF,BD đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a. Vì ABCD là hbh nên AB//CD hay AE//CF
Mà AE=CF nên AECF là hbh
b. Gọi M là giao AC và BD
Vì ABCD là hbh nên M là trung điểm AC và BD
Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF
Vậy AC,BD,EF đồng quy tại M
a: Ta có: AE+EB=AB
DF+FC=DC
mà AE=FC
và AB=DC
nên EB=DF
Xét tứ giác EBFD có
EB//DF
EB=DF
Do đó: EBFD là hình bình hành
Suy ra: DE=BF
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
=>AECF là hình bình hành
b: BE+AE=BA
CF+FD=CD
mà AE=CF và AB=CD
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
=>BEDF là hbh
=>BF//DE
c: ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(1)
AECF là hbh
=>AC cắt EF tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy