1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng
\(\dfrac{IA}{IF}=\dfrac{EA}{EC}=\dfrac{KA}{KH}\Rightarrow\)IK//DF.
\(\dfrac{RC}{RD}=\dfrac{EC}{EA}=\dfrac{QC}{QF}\Rightarrow\)QR//DF.
\(\dfrac{FB}{FI}=\dfrac{HB}{HE}=\dfrac{DB}{DR}\Rightarrow\)IR//DF
\(\Rightarrow\)4 điểm I,K,Q,R thẳng hàng.
1: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
2: ΔADB vuông tại D có DG vuông góc AB
nên AG*AB=AD^2
ΔADC vuông tại D
mà DH là đường cao
nên AH*AC=AD^2=AG*AB
=>AH/AB=AG/AC
=>ΔAHG đồng dạng với ΔABC
=>góc AGH=góc ACB=goc AFE
=>HG//FE
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK