Cho hình thoi ABCD có \(\widehat{A}=120^0\)vẽ tia à tạo với Ab một góc \(\widehat{BAx}=15^0\)và cắt CD tại N, BC tại M . CMR \(\frac{3}{AM^2}+\frac{3}{AN^2}=\frac{4}{AB^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ không được đẹp cho lắm :))
Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ
Từ A lại kẻ đường thẳng vuông góc với CD tại H.
Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK
=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)
Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)
\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)
Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)
Qua A kẻ AK vuông góc với CD và kẻ đường thẳng vuông góc với Ax, cắt CD ở H.
Ta có \(\angle DAB=120^{\circ},\angle HAM=90^{\circ},\angle MAB=15^{\circ}\to\angle DAH=15^{\circ}\).
Suy ra \(\Delta ADH=\Delta ABM\left(g.c.g\right)\to AH=AM.\)
Xét tam giác vuông AHN có AK là đường cao. Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{1}{AH^2}+\frac{1}{AN^2}=\frac{1}{AK^2}\to\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}.\)
Để ý rằng tam giác ACD đều (cân có 1 góc bằng 60). Suy ra \(AK^2=AD^2-DK^2=AD^2-\left(\frac{AD}{2}\right)^2=\frac{3}{4}AD^2=\frac{3}{4}AB^2\to AK=\frac{\sqrt{3}}{2}AB.\)
Do đó ta có \(\frac{4}{3AB^2}=\frac{1}{AK^2}=\frac{1}{AM^2}+\frac{1}{AN^2}.\) (ĐPCM)
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Vậy....
Kẻ\(AK\perp AM\left(K\in OC\right)\)
\(AH\perp DC\left(H\in DC\right)\)
Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có
\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)
Xét \(\Delta AMB\)và\(\Delta ADK\)có:
\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)
=> \(\Delta AMB=\Delta AKD\)
=> AM=AK ( 2 cạnh tương ứng)(2)
Áp dụng định lý py-ta-go , ta có :
\(HD^2+AH^2=AD^2\)
=>\(AH^2=AD^2-HD^2\)(3)
\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)
=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)
=>\(\widehat{ADH}=30^o\)
=>\(DH=\dfrac{1}{2}AD\)(4)
Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)
=\(\dfrac{3}{4}.AD^2\)
=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)
Thay (2) vào (5) , ta có :
\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)
<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)