tìm giá trị nhỏ nhất của biểu thức 9x^2+18xy-12x+13y^2-24y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=9x^2+18xy-12x+13y^2-24y+5
\(=\left(3x\right)^2+2.3.3xy-2.3x.2+9y^2+4y^2-12y-12y+4+9-8\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2+2.3x.3y+2.3x.2+2.3y.2\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y+2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}\left(3x+3y+2\right)^2=0\\\left(2y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+3y+2=0\\2y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6,5\\y=1,5\end{cases}}}\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
\(a,x^2+12x+39=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu = xảy ra \(\Leftrightarrow x+6=0\)
\(\Leftrightarrow x=-6\)
Vậy ...
\(b,9x^2-12x=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu = xảy ra \(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy ...
Trả lời:
a, \(x^2+12x+39=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu "=" xảy ra khi x + 6 = 0 <=> x = - 6
Vậy GTNN của biểu thức bằng 3 khi x = - 6
b, \(9x^2-12x=\left(3x\right)^2-2.3x.2+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu "=" xảy ra khi 3x - 2 = 0 <=> x = 2/3
Vậy GTNN của biểu thức bằng - 4 khi x = 2/3
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(Y=\sqrt{\left(3x+2\right)^2+7}\ge\sqrt{0+7}=\sqrt{7}\)
\(Y_{Min}=\sqrt{7}\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
\(\text{A=9x^2+18xy-12x+13y^2-24y+5}\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2-12x+18xy-12y\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y-2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}3x+3y-2=0\\2y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=1,5\end{cases}}}\)