OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các giá trị của x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Làm ơn giúp mình với!!!
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Điều kiện tự làm nhé
\(\Leftrightarrow x-y+z=x+y+z+2\left(\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\right)\)
\(\Leftrightarrow y+\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\z=y\end{cases}}\)
Bình phương 2 vế và phân tích nhân tử (:
tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Tìm tất cả các số tự nhiên x, y, z thỏa mãn:
\(\sqrt{x+4\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Ai giúp e vs ạ
tìm tất cả giá trị của x , y , z thỏa mãn đẳng thức : \(\sqrt{x-y-z}\)= \(\sqrt{x}\)- \(\sqrt{y}\)- \(\sqrt{z}\)
giúp mình với
cho các số dương x,y,z thỏa mãn \(x+y+z\le3\)
tìm giá trị lớn nhất của biểu thức: \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
cho các số dương x, y, z thỏa mãn \(x+y+z\le3\) tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Điều kiện tự làm nhé
\(\Leftrightarrow x-y+z=x+y+z+2\left(\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\right)\)
\(\Leftrightarrow y+\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\z=y\end{cases}}\)
Bình phương 2 vế và phân tích nhân tử (: