\(\frac{1}{4}+\frac{1}{10}+\frac{1}{18}+\frac{1}{28}+\frac{1}{40}+\frac{1}{54}+\frac{1}{70}\)
Nhờ mọi người giải giúp. Cám ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow\) A < 1 + 49/50
Mà 1+49/50 < 2 nên A < 1+49/50 < 2
\(\Rightarrow\) A < 2
A=\(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)=\(\frac{1}{7}-\frac{1}{14}\)=\(\frac{1}{14}\)
B=0
\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
1.
\(a.\frac{1}{2}+a.\frac{1}{4}=-\frac{4}{5}\Rightarrow a.\left(\frac{1}{2}+\frac{1}{4}\right)=-\frac{4}{5}\Rightarrow a=-\frac{16}{15}\)
2. Ta có:
\(A=\left(2\frac{5}{6}+1\frac{4}{9}\right):\left(10\frac{1}{12}-9\frac{1}{2}\right)=\left(\frac{17}{6}+\frac{13}{9}\right):\left(\frac{121}{12}-\frac{19}{2}\right)=\frac{77}{18}:\frac{7}{12}=\frac{22}{3}\)
\(B=1\frac{5}{18}-\frac{5}{18}\left(\frac{1}{15}+1\frac{1}{3}\right)=\frac{23}{18}-\frac{5}{18}\left(\frac{1}{15}+\frac{4}{3}\right)=\frac{23}{18}-\frac{1}{54}-\frac{10}{27}=\frac{8}{9}\)
Có: \(\frac{22}{3}=\frac{66}{9}>\frac{8}{9}\Leftrightarrow A>B\)
bằng \(\frac{539}{1080}\)
= 539/1080