K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 5 2021

a) Có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Dấu \(=\)xảy ra khi \(x=y=\frac{1}{2}\).

b) 

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow-4xy\ge-\left(x+y\right)^2=-1\)

Suy ra \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)

Dấu  \(=\)xảy ra khi \(x=y=\frac{1}{2}\).

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

30 tháng 4 2018

Đây chỉ nghĩ thôi nha

Ta có:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\frac{1}{2}\ge\sqrt{xy}\)

\(\Leftrightarrow\frac{1}{4}\ge xy\)( dấu = xảy ra khi và chỉ khi x=y=1/2)

Mặt khác: \(x^2+y^2\ge2xy\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Vậy Min của \(x^2+y^2\)là 1/2 tại x=y=1/2

Câu b) Lấy cái trên câu a)

Ta có: \(\frac{1}{4}\ge xy\)

Suy ra: \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)

Vậy min B=11/4

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3