Ở phía ngoài tam giác ABC, đường trung tuyến AM, dựng các tam giác đều ABD và BCE. Gọi M,N,P lần lượt là trung điểm AC,BD,BE .CMR MNP là tam giác đều
Chỉ cần vẽ hình thôi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đã 10 năm ko nhận đc đáp án và vẫn mãi ở phần câu hỏi chưa trl
h tui giải thoát cho nhé :)
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
Để chứng minh điều này, ta sẽ sử dụng tính chất của đường trung tuyến. Theo tính chất này, đường trung tuyến chia một tam giác thành hai tam giác có diện tích bằng nhau.
Vì vậy, ta có:
Diện tích tam giác AMN = Diện tích tam giác AMP
Diện tích tam giác BNP = Diện tích tam giác BMP
Ta cũng biết rằng M, N, P lần lượt là trung điểm của các cạnh AC, BD và BE. Do đó, ta có:
AM = MC, BN = ND, BP = PE
Từ đó, ta có thể suy ra:
Diện tích tam giác AMN = Diện tích tam giác AMP = 1/2 * Diện tích tam giác ABC
Diện tích tam giác BNP = Diện tích tam giác BMP = 1/2 * Diện tích tam giác ABC
Vì diện tích của hai tam giác AMN và BNP bằng nhau, ta có thể kết luận rằng tam giác MNP là tam giác đều.
Vậy, tam giác MNP là tam giác đều.
giúp mik với