giải pt
\(3x^2-8x-7=4x\sqrt{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
a.
\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)
Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:
\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow x+1=y\)
\(\Leftrightarrow\left(x+1\right)^3=y^3\)
\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)
\(\Leftrightarrow x^3+3x^2-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)
b.
\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:
\(a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)
\(\Leftrightarrow8x^3-6x-1=0\)
Đặt \(f\left(x\right)=8x^3-6x-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)
\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)
\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)
Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)
Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)
Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)
\(\Rightarrow8cos^3u-6cosu-1=0\)
\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)
\(\Leftrightarrow2cos3u=1\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
DKXD :\(x\ge-1\)
Đặt : \(\sqrt{x+1}=a\left(a\ge0\right)\Rightarrow\hept{\begin{cases}3x^2-8x-3=4xa\\a^2=x+1\end{cases}}\)
\(\Rightarrow3x^2-8x-3-4a^2=4xa-4a-4\Leftrightarrow4a^2+4xa+x^2=4x^2-4x+1\)
\(\Leftrightarrow\left(2a+x\right)^2=\left(2x-1\right)^2\)
+> \(2a+x=2x-1\Leftrightarrow2\sqrt{x+1}=x-1\Rightarrow4x+4=x^2-2x+1\left(x\ge1\right)\)
\(\Leftrightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3+2\sqrt{3}\left(tm\right)\\3-2\sqrt{3}\left(ktm\right)\end{cases}}\)
+> \(2a+x=1-2x\Leftrightarrow2\sqrt{x+1}=1-3x\Rightarrow4x+4=9x^2-6x+1\left(x\le\frac{1}{3}\right)\)
\(\Leftrightarrow9x^2-10x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+2\sqrt{13}}{9}\left(ktm\right)\\x=\frac{5-2\sqrt{13}}{9}\left(tm\right)\end{cases}}\)
Thử lại
Vậy :
Đặt \(\sqrt{x^2+4x+7}=t>0\), ta có pt sau:
\(2\left(t^2+3\right)-7t=0\)
⇔ \(t^2-7t+6=0\Leftrightarrow\left(t-2\right)\left(2t-3\right)=0\)
⇔\(\left[{}\begin{matrix}t=2\\t=\frac{3}{2}\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x^2+4x+7=4\\x^2+4x+7=\frac{9}{4}\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\x=\frac{\pm\sqrt{79}-4}{2}\end{matrix}\right.\)
Vậy ...
Đk: \(x\ge-2\)
PT \(\Leftrightarrow\) \(x\left(12-4\sqrt{x+2}\right)+3x^2-20x-7=0\)
\(\Leftrightarrow x.\dfrac{144-16\left(x+2\right)}{12+4\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{-4x\left(x-7\right)}{3+\sqrt{x+2}}+\left(x-7\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left(3+\sqrt{x+2}\right)\left(3x+1\right)=4x\end{matrix}\right.\)
Đặt \(u=\sqrt{x+2}\Leftrightarrow x=u^2-2\left(u\ge0\right)\)
PT (2) \(\Leftrightarrow\left(3+u\right)\left(3u^2-5\right)=4\left(u^2-2\right)\)
\(\Leftrightarrow9u^2-15+3u^3-5u=4u^2-8\)
\(\Leftrightarrow3u^3+5u^2-5u-7=0\) \(\Leftrightarrow u=\dfrac{-1+\sqrt{22}}{3}\)
\(\Leftrightarrow x=\dfrac{5-2\sqrt{22}}{9}\)
Vậy...
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 3x^2-20x-7=4x\sqrt{x+2}-12x$
$\Leftrightarrow (x-7)(3x+1)=4x(\sqrt{x+2}-3)=4x.\frac{x-7}{\sqrt{x+2}+3}$
$\Leftrightarrow x-7=0$ hoặc $3x+1=\frac{4x}{\sqrt{x+2}+3}$
Nếu $x-7=0\Leftrightarrow x=7$ (tm)
Nếu $3x+1=\frac{4x}{\sqrt{x+2}+3}$
$\Leftrightarrow 9x+3+(3x+1)\sqrt{x+2}=4x$
$\Leftrightarrow 5x+3+(3x+1)\sqrt{x+2}=0$
$\Leftrightaqrrow 5x+3=-(3x+1)\sqrt{x+2}$
$\Rightarrow (5x+3)^2=(3x+1)^2(x+2)$
$\Leftrightarrow 9x^3-x^2-17x-7=0$
$\Leftrightarrow (x+1)(9x^2-10x-7)=0$
$\Rightarrow$........