K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

2) Ta có: 

\(C_{ABCD}=AB+BC+CD+AD=54\left(cm\right)\) (1)

\(C_{ABD}=AB+BD+AD=68\)

\(\Rightarrow AB=68-BD-AD\) (2)

\(C_{BCD}=BC+BD+CD=40\)

\(\Rightarrow CD=40-BC-BD\) (3)

Thay (2) và (3) vào (1) ta có:

\(68-BD-AD+BC+AD+40-BC-BD=54\)

\(\Rightarrow108-2BD=54\)

\(\Rightarrow2BD=108-54\)

\(\Rightarrow2BD=54\)

\(\Rightarrow BD=27\left(cm\right)\)

3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ

=>Trái với  định lí tổng 4 góc trong một tứ giác

Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ

=>Trái với định lí tổng 4 góc trong một tứ giác

Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được

4: Sửa đề: DA=DC

a: BA=BC

DA=DC

=>BD là trung trực của AC

b: góc A+góc C=360-120-80=160 độ

Xét ΔBAD và ΔBCD có

BA=BD

AD=CD

BD chung

=>ΔBAD=ΔBCD

=>góc BAD=góc BCD=160/2=80 độ

 

3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ

=>Trái với  định lí tổng 4 góc trong một tứ giác

Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ

=>Trái với định lí tổng 4 góc trong một tứ giác

Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được

16 tháng 6 2016

Khó quá!

28 tháng 8 2016

Bài 1: Có P(ABCD) = AB + BC + CD + DA = 66

P(ABC) = AB + BC + CA = 56

P(ACD) = AC + CD + DA = 60 

=> P (ABC) + P(ACD) = (AB + BC + CD + DA) + 2.AC = 66 + 2.AC = 56 + 60  = 116

=> 2.AC = 116 - 66 = 50 => AC = 50 : 2 = 25

 

21 tháng 6 2017

Bạn ơi câu đàu tiên phải là "của tứ giác ABCD" nhé, mình đánh máy nhầm.

Mà bạn là VIP bias T.O.P đúng hơm,y chang mình. Kết bạn nhoa~

21 tháng 6 2017

Gọi O là giao điểm 2 đường chéo AC và BD cảu tứ giác ABCD.

Xét tam giác AOB, theo bất đẳng thúc tam giác, ta có:  AB<OA+OB

Xét tam giác COD, theo bất đẳng thức tam giác, ta có: CD<OC+OD

Suy ra:                  AB+CD<OA+OB+OC+OD

hay                       AB+CD<AC+BD (1)

Ta lại có:        AB+BD+AD=<AC+CD+AD

\(\Rightarrow\)                    AB+BD=<AC+CD

\(\Rightarrow\)                   AB-CD=<AC-BD (2)

Từ (1) và (2), suy ra: 2AB<2AC (cộng vế theo vế)

\(\Rightarrow\)                           AB<AC (đpcm)

Đảm bảo chính xác 100%

Độ tin cậy không cần bàn cãi.