K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}

23 tháng 9 2015

A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25} 

21 tháng 3 2016

tsfđgggggggggg

23 tháng 8 2021

cứu mik vớiiiiiiiiii

23 tháng 8 2021

a. ĐK : \(n\ne-4\) 

\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)

\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n + 41-13-3
n-3-5-1-7

b, ĐK : \(n\ne-1\)

 \(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n + 11-12-24-4
n0-21-33-5

c,ĐK : \(n\ne\frac{1}{2}\) 

\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

2n - 11-12-24-48-8
n103/2(loại)-1/2(loại)5/2(loại)-3/2(loại)9/2(loại)-7/2(loại)
23 tháng 6 2016

Toán lớp 7

23 tháng 6 2016

Toán lớp 7

vậy để B nguyên thì n\(\in\) {-17;-3;1;3;5;7;11;25}

1 tháng 7 2015

Đặt A=3n+9/n-4

ta có để A thuộc Z ta có 

3n+9=3(n-4)+17

ta có 3(n-4) chia hết cho n-4

suy ra 17 chia hết cho n-4

n-4 thuộc ước của 17

Ư(17)={1;-1;17;-17}

th1 n-4=1 suy ra n=5

th2 n-4=-1 suy ra n=3

th3 n-4=17 suy ra n=21

th4 n-4=-17 suy ra n=-13

Vậy n={5;3;21;-13}

B, Đặt B=5/n+1

Để B nhận giá trị nguyên thì 5 phải chia hết cho n+1

n+1 thuộc ước của 5 

Ư(5)={1;-1;-5;5}

th1 n+1=1 suy ra n=0

th2 n+1=-1 suy ra n=-2

th3 n+1=-5 suy ra n=-6

th4 n+1=5 suy ra n=4

c, Đặt C=6n+5/2n-1

Để C nhận giá trị nguyên thì 6n+5 phải chia hết cho 2n-1

6n+5=6(n-1)+11

ta có 6(n-1) chia hết cho 2n-1

suy ra 11 chia hết cho 2n-1

2n-1 thuộc ước của 11

Ư(11)={1;-1;-11;11}

th1 2n-1=11 suy ra n=6

th2 2n-1=-11 suy ra n=-5

th3 2n-1=1 suy ra n=1

th4 2n-1=-1 suy ra n=0

n={6;5;1;0}

11 tháng 12 2016

đúng nhưng vít hơn dài dòng

11 tháng 4 2020

A/ \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{\left(n-4\right).3+21}{n-4}\)

ta có \(\frac{\left(n-4\right).3}{n-4}\)là số nguyên nên để A là một số nguyên thì (n--4) thuộc ước của 21

n-473-7-3211-21-1
n????????

B/\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{\left(2n-1\right).3+8}{2n-1}\)

giải như trên như bạn

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517
6 tháng 7 2016

a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)

\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)

\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)

b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)

\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{1;0\right\}\)  Vì \(n\in Z\)

13 tháng 11 2016

Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:

n-41-13-37-721-21
n537111-325-17

Vậy......

b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

2n-11-12-24-48-8
n101.5 (loại)-0.5 (loại)2.5 (loại)-1.5 (loại)4.5 (loại)-3.5 (loại)

Vậy \(x\in\left\{0;1\right\}\)

10 tháng 6 2017

a) \(\frac{3n+9}{n-4}\in Z\Leftrightarrow3n+9⋮n-4\)

\(n-4⋮n-4\Rightarrow3\left(n-4\right)⋮n-4\Rightarrow3n-12⋮n-4\)

\(\Rightarrow3n-12-\left(3n+9\right)⋮n-4\Rightarrow3n-12-3n-9⋮n-4\Rightarrow-21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)=\left\{1;3;7;21;-1;-3;-7;-21\right\}\)

\(\Rightarrow n\in\left\{5;7;11;25;3;1;-3;-17\right\}\)thì \(\frac{3n+9}{n-4}\in Z\)

b) \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow6n+5⋮2n-1\)

\(2n-1⋮2n-1\Rightarrow3\left(2n-1\right)⋮2n-1\Rightarrow6n-3⋮2n-1\)

\(\Rightarrow6n+5-\left(6n-3\right)⋮2n-1\Rightarrow6n+5-6n+3⋮2n-1\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;2;4;-1;-2;-4\right\}\Rightarrow2n\in\left\{2;3;5;0;-1;-3\right\}\)

\(\Rightarrow n\in\left\{1;1,5;2,5;0;-0.5;-1,5\right\}\)thì \(\frac{6n+5}{2n-1}\in Z\)

10 tháng 6 2017

a, \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

Để \(\frac{3n+9}{n-4}\)nguyên <=> n - 4 \(\in\)Ư(21) = {1;-1;3;-3;7;-7;21;-21}

n - 41-13-37-721-21
n537111-325-17

Vậy....

b, \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Đến đây bạn làm giống bài a