giúp mình trả lời nha các bạn
tính tổng số
s= 9.8 + 8.7 + 7.6 +..........+2.1- 1.2 - 2.3 - 3.4 - ........ - 8.9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9.8+8.7+7.6+...+2.1-1.2-2.3-3.4-...-8.9
=(9.8-8.9)+(8.7-7.8)+(7.6-6.7)+...+(2.1-1.2)
=0.9+0.9+0.9+0.9+0.9+0.9+0.9+0.9
mình ko biết à nha thực ra là mình cũng đang định hỏi nè
= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 + ...... + 3024-3023/3023.3024
= 1-1/2+1/2-1/3+1/3-1/4+.....+1/3023-1/3024
= 1- 1/3024 = 3023/3024
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé
bạn hãy hãy cộng theo cặp cho dễ nhé,có 50 cặp như thế do đó là 101*50=5050
\(A=1.2+2.3+3.4+...+9.10\)
\(3A=1.2.3+2.3.3+3.4.3+...+9.10.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+9.10.\left(11-8\right)\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-8.9.10+9.10.11\)
\(=9.10.11\)
\(\Rightarrow A=\frac{9.10.11}{3}=330\)
Lời giải 1 :
Nhận xét : Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Nhân 2 vế của A với 3 lần khoảng cách này ta được :
3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11
= 9.10.11 = 990.
A = 990/3 = 330
Ta chú ý tới đáp số 990 = 9.10.11, trong đó 9.10 là số hạng cuối cùng của A và 11 là số tự nhiên kề sau của 10, tạo thành tích ba số tự nhiên liên tiếp. Ta cã kết quả tæng qu¸t sau :
A = 1.2 + 2.3 + … + (n - 1).n = (n - 1).n.(n + 1)/3
Lời giải khác :
Lời giải 2 :
3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3
= 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3
= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11
Ta chưa biết cách tính tổng bình phương các số lẻ liên tiếp bắt đầu từ 1, nhưng liên hệ với lời giải 1, ta có :
(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay
(12 + 32 + 52 + 72 + 92) = 9.10.11/6
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +....+ 98.99
⇒⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 +....+ 98.99.3
⇒⇒ 3A = 1.2.3 + 2.3(4-1) + 3.4(5-2) + 4.5(6-3) +.....+ 98.99(100-97)
⇒⇒ 3A = 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 + ....+ 98.99.100 - 98.99.97
⇒⇒ 3A = 98.99.100
⇒⇒ A = 98.99.100398.99.1003 = 323400
b, tự giải nhé
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+5.6.(7-4)+6.7.(8-5)+7.8.(9-6)+8.9.(10-7)+9.10.(11-8)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+7.8.9-6.7.8+8.9.10-7.8.9+9.10.11-8.9.10
=9.10.11
=> A=9.10.11:3
=3.10.11
=330
3A= 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11
= 9.10.11 = 990.
A= 990/3 = 330
\(S=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)
\(=\left(9,8-8,9\right)+\left(8,7-7,8\right)+...+\left(2,1-1,2\right)\)
\(=0,9+0,9+...+0,9\)
\(=0,9\times8=7,2\)