Help me pls:"))
Tìm đa thức B(x) thỏa mãn:A(x)=B(x).Q(x)-x+1
Biết A(x)=x^3-2x^2+x Q(x)=x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9
ta có :
\(P\left(x^2\right)=x^2\left(x^2+1\right)P\left(x\right)\Rightarrow\frac{P\left(x^2\right)}{x^4\left(x^4-1\right)}=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\)
Đặt \(f\left(x\right)=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\Rightarrow f\left(x\right)=f\left(x^2\right)\forall x\Rightarrow f\left(x\right)=f\left(-x\right)=f\left(x^2\right)\)
\(\Rightarrow f\left(x\right)=f\left(\sqrt{x}\right)=...=f\left(\sqrt[2^n]{x}\right)=f\left(1\right)\) với mọi x>0
nên ta có f(x) là hàm hằng
hay \(\frac{P\left(x\right)}{x^2\left(x^2-1\right)}=c\text{ mà }P\left(2\right)=2\Rightarrow c=\frac{1}{6}\)
Vậy \(P\left(x\right)=\frac{1}{6}\left(x^2\left(x^2-1\right)\right)\)
P(x) = x2 - 2x + 7x3 - 12
Q (x) = x3 - 2x2 + 5 - 5
=> P(x) = 7x3 + x2 - 2x - 12
=> Q (x) = x3 - 2x2
a) P(x) + Q(x) = 8x3 - x2 - 2x - 12
b) P(x) - Q(x) = 6x3 + 3x2 -2x - 12
c)
R(x) = -2x + 6 = 0
=> -2x = -6
=> x = -6 : (-2)
=> x = 3
Vậy x = 3 là nghiệm của đa thức R(x) = -2x + 6
cho mình hỏi chút có ai chơi free fire nếu có nhắn mình nha thanhk bạn
a, Ta có : \(P\left(x\right)+Q\left(x\right)\)ta được :
\(2x^3-3x^2+x+x^3-x^2+2x+1=3x^3-3x^2+3x+1\)
b, \(P\left(x\right)+M\left(x\right)=2Q\left(x\right)\Rightarrow M\left(x\right)=2Q\left(x\right)-P\left(x\right)\)
\(M\left(x\right)=2x^3-2x^2+4x+2-2x^3+3x^2-x=x^2+3x+2\)
c, Thay x = -2 vào đa thức M(x) ta được :
\(4-6+2=0\)* đúng *
Vậy x = -2 là nghiệm của đa thức M(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
`@` `\text {Ans}`
`\downarrow`
Ta có:
`A(x) = B(x)* Q(x) - x + 1`
`A(x) = x^3-2x^2+x`; `Q(x) = x - 1`
`<=> B(x) * (x - 1) - x + 1 = x^3 - 2x^2 + x`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + x + x - 1`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + 2x - 1`
`<=> B(x) = (x^3 - 2x^2 + 2x - 1) \div (x - 1)`
`<=> B(x) = x^2 - x + 1`
Vậy, `B(x) = x^2 - x + 1.`
A(x)=B(x)*Q(x)-x+1
=>x^3-2x^2+x=B(x)(x-1)-x+1
=>B(x)*(x-1)=x^3-2x^2+x+x-1=x^3-2x^2+2x-1
=>\(B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)}{x-1}\)
=>B(x)=x^2+x+1-2x
=>B(x)=x^2-x+1