Cho góc xOy khác góc bẹt và Ot là phân giác. Lấy điểm C thuộc Ot (C khác O). Qua C kẻ đường vuông góc với Ot, cắt Ox, Oy tho thứ tự ở A,B.
a, Chứng minh: OA=OB
b, Lấy điểm D thuộc Ct (D khác C). Chứng minh DA=DB và OAD = OBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Xét tam giác OMK và tam giác ONK có :
OK là cạnh chung
góc MKO = góc NKO = 90 độ (gt)
góc MOK = góc NOK (gt)
\(\Rightarrow\) Tam giác OMK = tam giác ONK ( g.c.g )
\(\Rightarrow\) OM = ON ( hai cạnh tương ứng )
c,Xét tam giác OMQ và tam giác ONQ có :
ON = OM (cmt )
OQ là cạnh chung
góc MOQ = góc NOQ
\(\Rightarrow\) Tam gíc OMQ = tam giác ONQ ( c.g.c )
\(\Rightarrow\) góc ONQ = góc OMQ
b, Xét tam giác OMK và tam giác ONK có :
OK là cạnh chung
góc MKO = góc NKO = 90 độ (gt)
góc MOK = góc NOK (gt)
⇒⇒ Tam giác OMK = tam giác ONK ( g.c.g )
⇒⇒ OM = ON ( hai cạnh tương ứng )
c,Xét tam giác OMQ và tam giác ONQ có :
ON = OM (cmt )
OQ là cạnh chung
góc MOQ = góc NOQ
⇒⇒ Tam gíc OMQ = tam giác ONQ ( c.g.c )
⇒⇒ góc ONQ = góc OMQ nho tim nha
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
a: Xét ΔOAB vuông tại A và ΔOAC vuông tại A có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đó: ΔOAB=ΔOAC
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).
a: Xét ΔOAB có
OC vừa là đường cao, vừa là đường phân giác
=>ΔOAB cân tại O
b: Xét ΔOAD và ΔOBD có
OA=OB
góc AOD=góc BOD
OD chung
=>ΔOAD=ΔOBD
=>DA=DB và góc OAD=góc OBD