K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

\(\log_{0,5}\left(2-x\right)=-1\\ \Leftrightarrow\log_{\dfrac{1}{2}}\left(2-x\right)=log_22^{-1}\\ \Leftrightarrow-\log_2\left(2-x\right)=-\log_22\\ \Leftrightarrow2-x=2\\ \Leftrightarrow x=0\)

-> A

Chọn A

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)

\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

c, ĐK: \(x>-7\)

\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)

Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)

d, ĐK: \(x>\dfrac{1}{2}\)

\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)

Kết hợp với ĐKXĐ, ta được: \(x\ge8\)

13 tháng 8 2023

`3^(2x-5)=27`

`<=> 2x-5=3`

`<=> 2x=2`

`<=>x=1`

`=>A`

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: \(x>-1;x\ne0\)

\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)

e, Điều kiện: \(x>\dfrac{5}{3}\)

\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)

f, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x - 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)

Vậy phương trình có nghiệm là \(x \in \left\{ {1;3} \right\}\)

b)    \(0,{5^{2x - 4}} = 4 \Leftrightarrow 2x - 4 = {\log _{0,5}}4 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\)

Vậy phương trình có nghiệm là x = 1

c)     \({\log _3}(2x - 1) = 3\)    ĐK: \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\)

\( \Leftrightarrow 2x - 1 = 27 \Leftrightarrow x = 14\) (TMĐK)

Vậy phương trình có nghiệm là x = 14

d)    \(\log x + \log (x - 3) = 1\)  ĐK: \(x - 3 > 0 \Leftrightarrow x > 3\)

\(\begin{array}{l} \Leftrightarrow \log \left( {x.\left( {x - 3} \right)} \right) = 1\\ \Leftrightarrow {x^2} - 3x = 10\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 2 (loại) \,\,\,\\x = 5 (TMĐK) \,\,\,\,\,\,\,\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm x = 5

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

Điều kiện xác định: \(x^2-2x+1>0\)

Mà \(x^2-2x+1=\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow x-1\ne0\\ \Leftrightarrow x\ne1\)

Vậy D = \(R/\left\{1\right\}\) ⇒ Chọn B.

ĐKXĐ: x^2-2x+1>0

=>(x-1)^2>0

=>x-1<>0

=>x<>1

=>Chọn B

a: =>x-2=0 hoặc x+3=0

=>x=2 hoặc x=-3

b:=>x-7=0 hoặc x+2=0

=>x=7 hoặc x=-2

c: =>4x+2=0 hoặc 3x-4=0

=>x=4/3 hoặc x=-1/2

d: =>2x+1=0 hoặc x-3=0

=>x=3 hoặc x=-1/2

20 tháng 3 2023

a)

`(x-2)(x+3)=0`

`<=> x-2=0` hoặc `x+3=0`

`<=>x=2` hoặc `x=-3`

b)

`(x-7)(2+x)=0`

`<=>x-7=0` hoặc `2+x=0`

`<=>x=7` hoặc `x=-2`

c)

`(4x+2)(3x-4)=0`

`<=>4x+2=0` hoặc `3x-4=0`

`<=>x=-1/2` hoặc `x=4/3`

d)

`(2x+1)(x-3)=0`

`<=>2x+1=0` hoặc `x-3=0`

`<=>x=-1/2` hoặc `x=3`

e)

`(0,1x-3)(x+0,5)=0`

`<=>0,1x-3=0` hoặc `x+0,5=0`

`<=>x=30` hoặc `x=-0,5`

f)

`(0,2x-0,4)(0,1x+0,7)=0`

`<=>0,2x-0,4=0` hoặc `0,1x+0,7=0`

`<=>x=2` hoặc `x=-7`

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) =  - 2\)

Điều kiện: \(x - 2 > 0 \Leftrightarrow x > 2\)

Vậy phương trình có nghiệm là \(x = 6\).

b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)

Điều kiện: \(\left\{ \begin{array}{l}x + 6 > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 6\\x >  - 1\end{array} \right. \Leftrightarrow x >  - 1\)

Vậy phương trình có nghiệm là \(x = 4\).