\(\frac{x}{7}=\frac{y}{18}\)và y-x=44
giup mik nhé tìm x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
ADTCDTSBN ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{y-x}{7-3}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=21\end{cases}}\)
ta co 6/11.x=20
x=20.11/6
x=110/3
ta co 9/2y=20
y=20.2/9=40/9
ta co 18/5 z=20
z= 20.5/18
z=50/9
\(x=20:\frac{6}{11}=\frac{110}{3}\)
\(y=20:\frac{9}{2}=\frac{40}{9}\)
\(z=20:\frac{18}{5}=\frac{50}{9}\)
Bài 1 : Xin thôi ạ , bài dài quá . Bài này chỉ cần nhân tích chéo hoặc áp dụng tính chất của dãy tỉ số bằng nhau là ra .
Bài 2:
Gọi độ dài 3 cạnh của tam giác lần lượt là a , b , c ( a , b ,c > 0 ) ( cm )
Theo bài ra , ta có :
\(\hept{\begin{cases}a+b+c=45\\\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là : 10 cm ; 15 cm ; 20 cm
Ta có:\(\frac{-6}{12}=\frac{x}{8}\)
=>12x = -6.8
x=-6.8:12
x=-4
\(\frac{-6}{12}=\frac{-7}{y}\) => -6y=-7.12
y=-7.12:-6
y=14
\(\frac{-6}{12}=\frac{z}{-18}\) =>12z = -6.-18
z= -6.-18:12
z= 9
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Ta có:
\(\begin{cases}\frac{x}{5}=\frac{y}{-7}\\\frac{y}{4}=\frac{z}{15}\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{-20}=\frac{y}{28}\\\frac{y}{28}=\frac{z}{105}\end{cases}\)\(\Rightarrow\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}=\frac{x+3y-4z}{-20+84-420}=\frac{18}{-356}=\frac{-9}{178}\)
\(\Rightarrow\begin{cases}x=\frac{-9}{178}.\left(-20\right)=\frac{90}{89}\\y=\frac{-9}{178}.28=\frac{-126}{89}\\z=\frac{-9}{178}.105=\frac{-945}{178}\end{cases}\)
Vậy \(x=\frac{90}{89};y=\frac{-126}{89};z=\frac{-945}{178}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
x/2=2=>4
y/3=2=>6
z/4=2=>8
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
x/5=6=>30
y/6=6=>36
z/7=6=>42
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\) =>x=6.5=30;y=6.6=36;z=6.7=42
Áp dụng tính chất dãy tỉ số bằng nhau : x/7 = y/18 = y-x / 18-7 = 44/11 = 4 <=> x= 28 , y= 72
bạn áp dụg t/c dãy tỉ số bằng nhau có:
y/18=x/7=(y-x)/(18-7)=4
=>y/18=4=>y=72
=>x/7=4=>x=28