1. Với a > 0 và b > 0, chứng minh \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
giúp mjk nha m.n!! thks m.n nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=\frac{2}{\sqrt{xy}}.\)
Tượng tự \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}},\frac{1}{z}+\frac{1}{x}\ge\frac{2}{\sqrt{xz}}.\)
=>2VT>=2Vp
<=>VT>=VP
dấu = xảy ra khi x=y=z
By AM-GM we have:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}};\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}};\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\)
Cộng theo vế rồi rút gọn là có ĐPCM
Xảy ra khi x=y=z
\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)
Đặt \(b=a+\frac{2}{a}\Rightarrow b^2=a^2+4+\frac{4}{a^2}\Rightarrow a^2+\frac{4}{a^2}=b^2-4.\)
\(\Rightarrow A=\sqrt{\left(b^2-4\right)^2-8b^2+48}\)
\(=\sqrt{b^4-16b^2+64}\)
\(=\sqrt{\left(b^2-8\right)^2}=\left|b^2-8\right|\)
\(=\left|a^2+\frac{4}{a^2}-4\right|=\left|\left(a-\frac{2}{a}\right)^2\right|=\left(a-\frac{2}{a}\right)^2\)
\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2\cdot2}}=\sqrt{\sqrt{18}}\)
\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2\cdot3}}=\sqrt{\sqrt{12}}\)
từ trên ta suy ra
\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)
\(=2.2\sqrt{3}=4\sqrt{3}\)
b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)
\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)
c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
a. Gọi M là trung điểm của AC
Tam giác ABC vuông tại B có BM là đường trung tuyến nên:
\(BM=\left(\frac{1}{2}\right).AC\)(tính chất tam giác vuông)
Tam giác ACD vuông tại D có DM là đường trung tuyến nên:
\(DM=\left(\frac{1}{2}\right).AC\) (tính chất tam giác vuông)
Suy ra: MA = MB = MC = MD
Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \(\left(\frac{1}{2}\right).AC\)
b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC
AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật
Vì a > 0 và b > 0 ta đc:
Đặt \(A=\sqrt{a+b}\)
\(A^2=a+b\)
\(B=\sqrt{a}+\sqrt{b}\)
\(B^2=a+b+2\sqrt{ab}\)
Vì \(a+b< a+b+2\sqrt{ab}\)
\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(đpcm\right)\)
Vì a và b đều >0. Ta được:
Đặt A = \(\sqrt{a+b}\)
A2 = \(a+b\)
B = \(\sqrt{a}+\sqrt{b}\)
B2 = \(a+b+2\sqrt{ab}\)
Vì a + b < a + b + \(2\sqrt{ab}\)
Nên \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\) (đpcm)