K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$

$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$

$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

29 tháng 3 2021

có f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1là 

7 tháng 11 2018

Gọi thương của phép chia f(x) cho x là p(x)

        thương của phép chia f(x) cho x-1 là q(x)

       Thương và dư của phép chia f(x) cho x(x-1) là:h(x) và r(x)

\(\Rightarrow\hept{\begin{cases}f\left(x\right)=x.p\left(x\right)+1\left(1\right)\\f\left(x\right)=\left(x-1\right).q\left(x\right)+2\left(2\right)\\f\left(x\right)=x.\left(x-1\right).h\left(x\right)+r\left(x\right)\left(3\right)\end{cases}}\)

Xét biểu thức (3)

Do đa thức chia x.(x-1) có bậc là 2 nên r(x) có bậc <2

=> r(x) có dạng ax+b

=>f(x)=x.(x-1).h(x)+ax+b (4)

Do (4) đúng với mọi x=>(4) đúng với x=0,x=1

Với x=0 thay vào (4) ta được

f(0)=0.(0-1).h(0)+a.0+b

=> f(0)=b (5)

Với x=1 thay vào (4) ta được

f(1)=1.(1-1).h(1)+a.1+b

=>f(1)=a+b (6)

Lại có :từ(1) => f(0)=0.p(0)+1

                    =>f(0)=1 (7)

           Từ (2) => f(1)=(1-1).q(1)+2

                     => f(1)=2(8)

Từ (5),(7)=>b=1

Từ (6),(8)=>a+b=2

Suy ra a+b-b=2-1

=>a=1

=>ax+b=x+1

Vậy dư của đa thức f(x) cho x.(x-1) là x+1

Tk mk nha!!!!

*****Chúc bạn học giỏi*****

11 tháng 12 2021

\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)

b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)