K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

\(x^2+y^2+z^2-x-y-z+0,75=0\)

\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)+\left(z^2-z+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2=0\)

Dễ thấy: \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)\(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))

16 tháng 9 2018

7 tháng 12 2019

9 tháng 10 2017

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

Vì $0\leq x,y,z\leq 1$ nên:
$x(x-1)(y-1)\geq 0$

$\Leftrightarrow x^2y\geq x^2+xy-x$

Tương tự và cộng theo vế:

$x^2y+y^2z^2+z^2x+1\geq x^2+y^2+z^2+(xy+yz+xz)-(x+y+z)+1(*)$

Lại có:

$(x-1)(y-1)(z-1)\leq 0$

$\Leftrightarrow xyz-(xy+yz+xz)+(x+y+z)-1\leq 0$

$\Leftrightarrow xy+yz+xz-(x+y+z)\geq xyz-1\geq -1$ do $xyz\geq 0(**)$

Từ $(*); (**)\Rightarrow x^2y+y^2z+z^2x+1\geq x^2+y^2+z^2$

Ta có đpcm

Dấu "=" xảy ra khi $(x,y,z)=(0,1,1); (0,0,1)$ và hoán vị.