Cho tam giác ABC cân tại A lấy điểm D bất kì trên cạnh AB,lấy điểm E trên tia đối của CA.Sao cho CE=BD.Từ điểm D kẻ đường thẳng song song với AC cắt BC tại F a)C/M ∆DBF cân b)C/m DCEF là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc DBF=góc ACB
góc DFB=góc ACB
=>góc DBF=góc DFB
=>ΔDBF cân tại D
2: Xét tứ giác DFEC có
DF//EC
DF=EC
=>DFEC là hình bình hành
a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành
Bài này ta chủ yếu chứng minh các tam giác bằng nhau.
a. Xét tam giác BDF cân do có : góc DBF = ACB(Tam giác ABC cân) = DFB (Đồng vị)
b. Xét tam giác FMD và tam giác CME có:
Góc FDM =góc MEC(so le trong)
góc DFM = góc MCE (So le trong)
DF = CE(=DB)
\(\Rightarrow\Delta FMD=\Delta CME\left(g-c-g\right)\Rightarrow MD=ME\) (Hai cạnh tương ứng)
c. Ta có \(\Delta DCM=\Delta EFM\left(c-g-c\right)\Rightarrow DC=EF\)
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành