cho tg ABC\(\perp\)A.
a) Tính độ dài cạnh AC,BC biết: AB=12cm, tanB=\(\dfrac{3}{4}\)
b) Tính độ dài cạnh AC,BC biết: AB=1, sinB=\(\dfrac{\sqrt{3}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm
Lời giải:
Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$
$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago
$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$
$\Rightarrow \widehat{C}=53,13^0$
a) Ta có:
\(\widehat{A}=180^o-60^o-45^o=75^o\)
Áp dụng định lý sin ta có:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
\(\Rightarrow AC=\dfrac{BC\cdot sinB}{sinA}\)
\(\Rightarrow AC=\dfrac{a\cdot sin60^o}{sin75^o}=a\cdot\dfrac{3\sqrt{2}-\sqrt{6}}{2}\)
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
\(\Rightarrow AB=\dfrac{BC\cdot sinC}{sinA}\)
\(\Rightarrow AB=\dfrac{a\cdot sin45^o}{sin75^o}=a\cdot\left(\sqrt{3}-1\right)\)
b) \(cos75^o\)
\(=cos\left(30^o+45^o\right)\)
\(=cos30^o\cdot cos45^o-sin30^o\cdot sin45^o\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left(\dfrac{\sqrt{3}-1}{2}\right)\)
\(=\dfrac{\sqrt{6}-\sqrt{2}}{4}\left(dpcm\right)\)
\(tanB=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{BC}=\frac{3}{4}\)
Ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AB^2=BC^2-AC^2=\frac{16}{9}AC^2-AC^2=\frac{7}{9}AC^2=144\)
\(\Rightarrow AC=13,6\)
\(\Rightarrow BC=18,1\)
a) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 22 + 22
\(\Rightarrow\)BC2 = 8
\(\Rightarrow\)BC = \(\sqrt{8}\)
Vậy độ dài cạnh BC là \(\sqrt{8}\)dm.
b) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)22 = AB2 + AB2 (Vì AB=AC)
\(\Rightarrow\)4 = 2AB2
\(\Rightarrow\)2 = AB2
\(\Rightarrow\sqrt{2}\)= AB
Vậy độ dài cạnh AB = \(\sqrt{2}\)m
c) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\left(\sqrt{18}\right)^2\)= AC2 + AB2 (Vì AB=AC)
\(\Rightarrow\)18 = 2AC2
\(\Rightarrow\)9 = AC2
\(\Rightarrow\)3 = AC
Vậy độ dài cạnh AC = 3
a, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)((định lí pytago)
\(\Rightarrow2^2+2^2=BC^2\)
\(\Leftrightarrow BC^2=8\\ \Leftrightarrow BC=\sqrt{8}\left(dm\right)\)
b), Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=2^2\)
\(\Leftrightarrow2AB^2=4\)
\(\Leftrightarrow AB^2=2\\ AB=\sqrt{2}\left(m\right)\)
c, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=\sqrt{8}^2\)
\(\Leftrightarrow2AC^2=8\\ \Leftrightarrow AC^2=4\\ \Leftrightarrow AC=2\)
ĐS:.................................
#Châu's ngốc
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC=12\left(cm\right)\)
\(\Leftrightarrow AB=9\left(cm\right)\)
hay AH=7,2(cm)
a: tan B=3/4
=>AC/AB=3/4
=>AC=9cm
BC=căn 9^2+12^2=15cm
b: sin B=căn 3/2
=>AC/AB=căn 3/2
=>AC=căn 3
BC=căn AB^2+AC^2=2