Giải pt: x^2-4x+y^2-6y+15=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x^2-4x+4+y^2-6y+9=0
=>(x-2)^2+(y-3)^2=0
=>x=2 và y=3
\(x^2+y^2-4x+6y-3=0\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=16\)
Đường tròn (C) tâm \(A\left(2;-3\right)\) bán kính \(R=4\)
Gọi (C') là ảnh của (C) qua phép đối xứng tâm I \(\Rightarrow\) (C') có tâm B là ảnh của A qua phép đối xứng tâm I và bán kính \(R'=R=4\)
\(\left\{{}\begin{matrix}x_B=2x_I-x_A=-6\\y_B=2y_I-y_A=9\end{matrix}\right.\) \(\Rightarrow B\left(-6;9\right)\)
Phương trình (C'):
\(\left(x+6\right)^2+\left(y-9\right)^2=16\)
Lời giải:
Xét PT $(1)$:
$x^2+4x-5=y^2-6y$
$\Leftrightarrow x^2+4x+4=y^2-6y+9$
$\Leftrightarrow (x+2)^2=(y-3)^2$
$\Leftrightarrow (x+2-y+3)(x+2+y-3)=0$
$\Leftrightarrow (x-y+5)(x+y-1)=0$
Nhưng PT(2) thì có vấn đề, vì $1-y\geq 0\Rightarrow y\leq 1$
Mà $2y-5\geq 0\Leftrightarrow y\geq \frac{5}{2}$ (vô lý)
Đường tròn (C) tâm \(I\left(2;-3\right)\) bán kính \(R=4\)
(C') là ảnh của (C) qua phép đối xứng trục Oy có tâm \(I'\left(-2;-3\right)\) và cùng bán kính với (C)
Phương trình (C'):
\(\left(x+2\right)^2+\left(y+3\right)^2=16\)
Bạn tự khai triển ra nếu muốn
Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
Phương trình đầu trở thành:
\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)
\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)
\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)
Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải
- Với \(x=y+1\)
\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)
\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)
Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ
a) 3x-2=2x-3
3x=2x-1
Bớt mỗi vế 2x
x=-1
b)3-4y+24+6y=y+27+3y
3-4y+6y=y+3+3y
3-4y+3y=y+3
<=> y=0
c.7-2x=22-3x
2x=15-3x
15=x
d.8x-3=5x+12
3x-3=12
3x=15
x=5
câu e hình như bạn thiếu đề
f)x+2x+3x-19=3x+5
6x-19=3x+5
3x-19=5
3x=24
<=>x=8
g)11=8x-3=5x-3+x
11=8x-3
11=6x-3
<=> x không tồn tại
h)4-2x+15=9x+4x-2x
4-2x+15=11x
<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé
T
Ngập mặt ~
Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.
a/ 3x - 2 = 2x - 3
<=> 3x - 2 - 2x + 3 = 0
<=> x + 1 = 0
<=> x = -1
b/ 3 - 4y + 24 + 6y = y + 27 + 3y
<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0
<=> -2y = 0
<=> y = 0
a: =>(x-7)(x+3)=0
hay \(x\in\left\{7;-3\right\}\)
b: =>2x+7=0
hay x=-7/2
c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(x^2-4x+y^2-6y+15=0\)
\(\Rightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=-2\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\forall x;y\)
mà \(\left(x-2\right)^2+\left(y-3\right)^2=-2\)
\(\Rightarrow\)Phương trình vô nghiệm.
\(x^2-4x+y^2-6y+15=0\)
\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\)
Mà:
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2\ge2\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\) (vô lý)
⇒ Phương trình vô nghiệm:
\(x\in\varnothing\)