K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

\(x^2-4x+y^2-6y+15=0\)

\(\Rightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=-2\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

              \(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\forall x;y\)

mà \(\left(x-2\right)^2+\left(y-3\right)^2=-2\)

\(\Rightarrow\)Phương trình vô nghiệm.

21 tháng 8 2023

\(x^2-4x+y^2-6y+15=0\)

\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\)

Mà:  

\(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2\ge2\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\) (vô lý)

⇒ Phương trình vô nghiệm:

\(x\in\varnothing\)

=>x^2-4x+4+y^2-6y+9=0

=>(x-2)^2+(y-3)^2=0

=>x=2 và y=3

NV
29 tháng 7 2021

\(x^2+y^2-4x+6y-3=0\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=16\)

Đường tròn (C) tâm \(A\left(2;-3\right)\) bán kính \(R=4\)

Gọi (C') là ảnh của (C) qua phép đối xứng tâm I \(\Rightarrow\) (C') có tâm B là ảnh của A qua phép đối xứng tâm I và bán kính \(R'=R=4\)

\(\left\{{}\begin{matrix}x_B=2x_I-x_A=-6\\y_B=2y_I-y_A=9\end{matrix}\right.\) \(\Rightarrow B\left(-6;9\right)\)

Phương trình (C'):

\(\left(x+6\right)^2+\left(y-9\right)^2=16\)

10 tháng 12 2021

Ơ cái avt ..... :))

10 tháng 12 2021

Tham khảo:

Giải phương trình \(x^4-4x^3+6x^2-4x-15=0\) - Hoc24

AH
Akai Haruma
Giáo viên
28 tháng 6 2020

Lời giải:
Xét PT $(1)$:

$x^2+4x-5=y^2-6y$

$\Leftrightarrow x^2+4x+4=y^2-6y+9$

$\Leftrightarrow (x+2)^2=(y-3)^2$

$\Leftrightarrow (x+2-y+3)(x+2+y-3)=0$

$\Leftrightarrow (x-y+5)(x+y-1)=0$

Nhưng PT(2) thì có vấn đề, vì $1-y\geq 0\Rightarrow y\leq 1$

Mà $2y-5\geq 0\Leftrightarrow y\geq \frac{5}{2}$ (vô lý)

NV
11 tháng 10 2020

Đường tròn (C) tâm \(I\left(2;-3\right)\) bán kính \(R=4\)

(C') là ảnh của (C) qua phép đối xứng trục Oy có tâm \(I'\left(-2;-3\right)\) và cùng bán kính với (C)

Phương trình (C'):

\(\left(x+2\right)^2+\left(y+3\right)^2=16\)

Bạn tự khai triển ra nếu muốn

NV
4 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

Phương trình đầu trở thành:

\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)

\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)

\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)

Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải

- Với \(x=y+1\)

\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)

\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)

Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ

13 tháng 4 2017

a) 3x-2=2x-3

3x=2x-1

Bớt mỗi vế 2x

x=-1

b)3-4y+24+6y=y+27+3y

3-4y+6y=y+3+3y

3-4y+3y=y+3

<=> y=0

c.7-2x=22-3x

2x=15-3x

15=x

d.8x-3=5x+12

3x-3=12

3x=15

x=5

câu e hình như bạn thiếu đề

f)x+2x+3x-19=3x+5

6x-19=3x+5

3x-19=5

3x=24

<=>x=8

g)11=8x-3=5x-3+x

11=8x-3

11=6x-3

<=> x không tồn tại

h)4-2x+15=9x+4x-2x

4-2x+15=11x

<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé

T

13 tháng 4 2017

Ngập mặt ~ 

Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.

a/ 3x - 2 = 2x - 3

<=> 3x - 2 - 2x + 3 = 0

<=> x + 1               = 0

<=> x                    = -1

b/ 3 - 4y + 24 + 6y = y + 27 + 3y

<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0

<=> -2y                                        = 0

<=>   y                                         = 0

a: =>(x-7)(x+3)=0

hay \(x\in\left\{7;-3\right\}\)

b: =>2x+7=0

hay x=-7/2

c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)